ERogueWave

Accelerating Great Code

IMSL ${ }^{\circledR}$ FORTRAN MATH SPECIAL FUNCTIONS LIBRARY

Version 7.1.0
© 1970-2014 Rogue Wave Software, Visual Numerics, IMSL and PV-WAVE are registered trademarks of Rogue Wave Software, Inc. in the U.S. and other countries. JMSL, JWAVE, TS-WAVE, PyIMSL are trademarks of Rogue Wave Software, Inc. or its subsidiaries. All other company, product or brand names are the property of their respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this document is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the license agreement, you may not use this documentation and should promptly return the product for a full refund. This documentation may not be copied or distributed in any form without the express written consent of Rogue Wave.

Abstract

ACKNOWLEDGMENTS This documentation, and the information contained herein (the "Documentation"), contains proprietary information of Rogue Wave Software, Inc. Any reproduction, disclosure, modification, creation of derivative works from, license, sale, or other transfer of the Documentation without the express written consent of Rogue Wave Software, Inc., is strictly prohibited. The Documentation may contain technical inaccuracies or typographical errors. Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Rogue Wave Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse of the Documentation

ROGUE WAVE SOFTWARE, INC., MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE SOFTWARE, INC., HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT SHALL ROGUE WAVE SOFTWARE, INC., BE LIABLE, WHETHER IN CONTRACT, TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNECTION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

Rogue Wave Software, Inc.
Address: 5500 Flatiron Parkway, Boulder, CO 80301 USA
Product Information: (303) 473-9118 (800) 487-3217
Fax:
Web:
(303) 473-9137
http://www.roguewave.com

Contents

The IMSL Fortran Numerical Libraries 1
Getting Started 1
Finding the Right Routine. 2
Organization of the Documentation 2
Naming Conventions 3
Using Library Subprograms 4
Programming Conventions 5
Module Usage 6
Programming Tips 6
Optional Subprogram Arguments 7
Error Handling 7
Printing Results 8
Chapter 1: Elementary Functions 9
Routines 9
Usage Notes 10
CARG 11
CBRT 13
EXPRL 15
LOG10 17
ALNREL 19
Chapter 2: Trigonometric and Hyperbolic Functions 23
Routines 23
Usage Notes 24
TAN 25
COT 27
SINDG 30
COSDG 32
ASIN 34
ACOS 36
ATAN 38
ATAN2 40
SINH 42
COSH 44
TANH 46
ASINH 48
ACOSH 50
ATANH 52
Chapter 3: Exponential Integrals and Related Functions 55
Routines 55
Usage Notes 56
EI 57
E1 59
ENE 61
ALI 63
SI 66
CI 68
CIN. 70
SHI 72
CHI. 74
CINH 76
Chapter 4: Gamma Function and Related Functions 79
Routines 79
Usage Notes 80
FAC 81
BINOM 83
GAMMA 85
GAMR 88
ALNGAM 90
ALGAMS 93
GAMI 95
GAMIC 97
GAMIT 99
PSI 101
PSI1 103
POCH 105
POCH1 107
BETA 109
ALBETA 112
BETAI 114
Chapter 5: Error Function and Related Functions 117
Routines 117
Usage Notes 118
ERF 119
ERFC 121
ERFCE 124
CERFE 126
ERFI 128
ERFCI 131
DAWS 134
FRESC 136
FRESS 138
Chapter 6: Bessel Functions 141
Routines 141
Usage Notes 143
BSJ0 144
BSJ1 146
BSY0 148
BSY1 150
BSI0 152
BSI1 154
BSK0 156
BSK1 159
BSIOE 161
BSI1E 163
BSK0E 165
BSK1E 167
BSJNS 169
BSINS 172
BSJS 175
BSYS 177
BSIS 179
BSIES 181
BSKS 183
BSKES 185
CBJS 187
CBYS 190
CBIS 193
CBKS 195
Chapter 7: Kelvin Functions 197
Routines 197
Usage Notes 198
BER0 200
BEI0 202
AKER0. 204
AKEIO 206
BERP0 208
BEIP0 210
AKERP0 212
AKEIP0 214
BER1 216
BEI1 218
AKER1. 220
AKEI1 222
Chapter 8: Airy Functions 225
Routines 225
AI 226
BI 228
AID 230
BID. 232
AIE. 234
BIE. 236
AIDE 238
BIDE 240
CAI. 242
CBI. 244
CAID 246
CBID 248
Chapter 9: Elliptic Integrals 251
Routines 251
Usage Notes 252
ELK 255
ELE 257
ELRF 259
ELRD 261
ELRJ 263
ELRC 265
Chapter 10: Elliptic and Related Functions 267
Routines 267
Usage Notes 268
CWPL 269
CWPLD 271
CWPQ 273
CWPQD 275
EJSN 277
EJCN 280
EJDN 283
Chapter 11: Probability Distribution Functions and Inverses287
Routines 287
Usage Notes 290
BINDF 294
BINPR 296
GEODF 299
GEOIN 301
GEOPR 303
HYPDF 305
HYPPR 307
POIDF 309
POIPR 311
UNDDF 314
UNDIN 316
UNDPR 318
AKS1DF 320
AKS2DF 323
ALNDF 326
ALNIN 328
ALNPR 330
ANORDF 332
ANORIN 334
ANORPR 336
BETDF 338
BETIN 341
BETPR 343
BETNDF 345
BETNIN 348
BETNPR 351
BNRDF 354
CHIDF 356
CHIIN 359
CHIPR 361
CSNDF 363
CSNIN 366
CSNPR 368
EXPDF 371
EXPIN 373
EXPPR 375
EXVDF 377
EXVIN 379
EXVPR 381
FDF 383
FIN 386
FPR 388
FNDF 390
FNIN 393
FNPR 396
GAMDF 399
GAMIN 402
GAMPR 404
RALDF 406
RALIN 408
RALPR 409
TDF 411
TIN 413
TPR 415
TNDF 417
TNIN 420
TNPR 422
UNDF 424
UNIN 426
UNPR 428
WBLDF 430
WBLIN 432
WBLPR 434
GCDF 436
GCIN 439
GFNIN 442
Chapter 12: Mathieu Functions 445
Routines 445
Usage Notes 446
MATEE 447
MATCE 450
MATSE 454
Chapter 13: Miscellaneous Functions 457
Routines 457
Usage Notes 458
SPENC 460
INITS 462
CSEVL 463
Routines/Topics 465
User Errors 466
ERSET 469
IERCD and N1RTY 470
Machine-Dependent Constants 471
IMACH 472
АМАСН. 474
DMACH. 476
IFNAN(X) 477
UMACH 479
Reserved Names 481
Deprecated Features and Deleted Routines 482
Appendix A: Alphabetical Summary of Routines 485
Appendix B: References 495

Introduction

The IMSL Fortran Numerical Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access. These Libraries are organized as follows:

- MATH LIBRARY general applied mathematics and special functions

The User's Guide for IMSL MATH LIBRARY has two parts:

1. MATH LIBRARY
2. MATH LIBRARY Special Functions

- STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines are also available for complex and complex-double precision arithmetic. The same user interface is found on the many hardware versions that span the range from personal computer to supercomputer. Note that some IMSL routines are not distributed for FORTRAN compiler environments that do not support double precision complex data. The specific names of the IMSL routines that return or accept the type double complex begin with the letter "Z" and, occasionally, "DC."

Getting Started

IMSL MATH LIBRARY Special Functions is a collection of FORTRAN subroutines and functions useful in research and statistical analysis. Each routine is designed and documented to be used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other language) to call the MATH LIBRARY Special Functions routine. Each routine conforms to established conventions in programming and documentation. We give first priority in development to efficient algorithms, clear
documentation, and accurate results. The uniform design of the routines makes it easy to use more than one routine in a given application. Also, you will find that the design consistency enables you to apply your experience with one MATH LIBRARY Special Functions routine to all other IMSL routines that you use.

Finding the Right Routine

The organization of IMSL MATH LIBRARY Special Functions closely parallels that of the National Bureau of Standards' Handbook of Mathematical Functions, edited by Abramowitz and Stegun (1964). Corresponding to the NBS Handbook, functions are arranged into separate chapters, such as elementary functions, trigonometric and hyperbolic functions, exponential integrals, gamma function and related functions, and Bessel functions. To locate the right routine for a given problem, you may use either the table of contents located in each chapter introduction, or one of the indexes at the end of this manual.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each routine, including sample input and results. You will find all information pertaining to the Special Functions Library in this manual. Moreover, all information pertaining to a particular routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in the chapter. Documentation of the routines consists of the following information:

- IMSL Routine's Generic Name
- Purpose: a statement of the purpose of the routine. If the routine is a function rather than a subroutine the purpose statement will reflect this fact.
- Function Return Value: a description of the return value (for functions only).
- Required Arguments: a description of the required arguments in the order of their occurrence. Input arguments usually occur first, followed by input/output arguments, with output arguments described last. Futhermore, the following terms apply to arguments:
Input Argument must be initialized; it is not changed by the routine.
Input/Output Argument must be initialized; the routine returns output through this argument; cannot be a constant or an expression.
Input or Output Select appropriate option to define the argument as either input or output. See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine returns output through this argument.

- Optional Arguments: a description of the optional arguments in the order of their occurrence.
- Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.
- Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is supplied for backwards compatibility with previous versions of the Library.
- ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK based version of this routine.
- Description: a description of the algorithm and references to detailed information. In many cases, other IMSL routines with similar or complementary functions are noted.
- Comments: details pertaining to code usage.
- Programming notes: an optional section that contains programming details not covered elsewhere.
- Example: at least one application of this routine showing input and required dimension and type statements.
- Output: results from the example(s). Note that unique solutions may differ from platform to platform.
- Additional Examples: an optional section with additional applications of this routine showing input and required dimension and type statements.

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision and a double precision version, with names of the two versions sharing a common root. The root name is also the generic interface name. The name of the double precision specific version begins with a" D ". The single precision specific version begins with an "S_". For example, the following pairs are precision specific names of routines in the two different precisions: S_GAMDF / D_GAMDF (the root is "GAMDF ," for "Gamma distribution function") and S_POIDF/D_POIDF (the root is "POIDF," for "Poisson distribution function"). The precision specific names of the IMSL routines that return or accept the type complex data begin with the letter "C_" or " z_{-}" for complex or double complex, respectively. Of course the generic name can be used as an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where standard names are already established, the standard names are used as the precision specific names. There may also be other interfaces supplied to the routine to provide for backwards compatibility with previous versions of the Library. These alternate interfaces are noted in the documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the FORTRAN default type for integer and floating point. In other words, a variable whose name begins with one of the letters " I " through " N " is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a FORTRAN argument can have an assumed-size declarator for the last dimension only. In the MATH LIBRARY Special Functions routines, the information about the first dimension is passed by a variable with the prefix " LD " and with the array name as the root. For example, the argument LDA contains the leading dimension of array A. In most cases, information about the dimensions of arrays is obtained from the array through the use of Fortran 90 's size function. Therefore, arguments carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the MATH LIBRARY Special Functions. For example, in the routines for random number generation, NR denotes the number of random numbers to be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH LIBRARY Special Functions, the user should choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or named common blocks. The careful user can avoid any conflicts with IMSL names if, in choosing names, the following rules are observed:

- Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the User's Manual, nor one of these names preceded by a D, $\mathrm{S}_{-}, \mathrm{D}_{-}, \mathrm{C}_{-}$, or Z_{-}.
- Do not choose a name consisting of more than three characters with a numeral in the second or third position.

For further details, see the section on Reserved Names in the Reference Material.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle, note the BSJNS documentation (see Chapter 6, "Bessel Functions", of this manual). A description is provided for just one data type. There are four documented routines in this subject area: S_BSJNS, D_BSJNS, C_BSJNS, and Z_BSJNS.

These routines constitute single-precision, double-precision, complex, and complex double-precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with the routines. The naming convention for modules joins the suffix "_int" to the generic routine name. Thus, the line "use BSJNS_INT" is inserted near the top of any routine that calls the subprogram "BSJNS". More inclusive modules are also available. For example, the module named imsl_libraries contains the interface modules for all routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, A^{T} are replaced by the adjoint matrix

$$
\bar{A}^{T} \equiv A^{*}=A^{H}
$$

where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear algebra software uses this convention to conserve the utility of generic documentation for that code subject. All references to orthogonal matrices are to be replaced by their complex counterparts, unitary matrices. Thus, an $n \times n$ orthogonal matrix Q satisfies the condition $Q^{T} Q=I_{n}$. An $n \times n$ unitary matrix V satisfies the analogous condition for complex matrices, $V^{*} V=I_{n}$.

Programming Conventions

In general, the IMSL MATH LIBRARY Special Functions codes are written so that computations are not affected by underflow, provided the system (hardware or software) places a zero value in the register. In this case, system error messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating overflow should be examined for programming errors such as incorrect input data, mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This error-handling capability provides automatic protection for the user without requiring the user to make any specific provisions for the treatment of error conditions. See the section on User Errors in the Reference Material for further details.

Module Usage

Users are required to incorporate a "use" statement near the top of their program for the IMSL routine being called when writing new code that uses this library. However, legacy code which calls routines in the previous version of the library without the presence of a "use" statement will continue to work as before. The example programs throughout this manual demonstrate the syntax for including use statements in your program. In addition to the examples programs, common cases of when and how to employ a use statement are described below.

- Users writing new programs calling the generic interface to IMSL routines must include a use statement near the top of any routine that calls the IMSL routines. The naming convention for modules joins the suffix "_int" to the generic routine name. For example, if a new program is written calling the IMSL routines LFTRG and LFSRG, then the following use statements should be inserted near the top of the program

```
USE LFTRG_INT
USE LFSRG_INT
```

In addition to providing interface modules for each routine individually, we also provide a module named "imsl_libraries", which contains the generic interfaces for all routines in the library. For programs that call several different IMSL routines using generic interfaces, it can be simpler to insert the line

USE IMSL_LIBRARIES
rather than list use statements for every IMSL subroutine called.

- Users wishing to update existing programs to call other routines from this library should incorporate a use statement for the new routine being called. (Here, the term "new routine" implies any routine in the library, only "new" to the user's program.) For example, if a call to the generic interface for the routine LSARG is added to an existing program, then

USE LSARG_INT
should be inserted near the top of your program.

- Users wishing to update existing programs to call the new generic versions of the routines must change their calls to the existing routines to match the new calling sequences and use either the routine specific interface modules or the all encompassing "imsl_libraries" module.
- Code which employed the "use numerical_libraries" statement from the previous version of the library will continue to work properly with this version of the library.

Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done by including the line "IMPLICIT NONE" as close to the first line as possible. Study some of the examples accompanying an IMSL Fortran Numerical Library routine early on. These examples are available online as part of the product.

Each subject routine called or otherwise referenced requires the "use" statement for an interface block designed for that subject routine. The contents of this interface block are the interfaces to the separate routines available for that subject. Packaged descriptive names for option numbers that modify documented optional data or internal parameters might also be provided in the interface block. Although this seems like an additional complication, many typographical errors are avoided at an early stage in development through the use of these interface blocks. The "use" statement is required for each routine called in the user's program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then the "use" statements are not required.

Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional arguments. All arguments are documented for each routine. For example, consider the routine GCIN which evaluates the inverse of a general continuous CDF. The required arguments are P, X, and F. The optional arguments are IOPT and M. Both IOPT and M take on default values so are not required as input by the user unless the user wishes for these arguments to take on some value other than the default. Often there are other output arguments that are listed as optional because although they may contain information that is closely connected with the computation they are not as compelling as the primary problem. In our example code, GCIN, if the user wishes to input the optional argument "IOPT" then the use of the keyword "IOPT=" in the argument list to assign an input value to IOPT would be necessary.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES interface module includes backwards compatible positional argument interfaces to all routines which existed in the Fortran 77 version of the Library. Note that it is not necessary to use "use" statements when calling these routines by themselves. Existing programs which called these routines will continue to work in the same manner as before.

Error Handling

The routines in IMSL MATH LIBRARY Special Functions attempt to detect and report errors and invalid input. Errors are classified and are assigned a code number. By default, errors of moderate or worse severity result in messages being automatically printed by the routine. Moreover, errors of worse severity cause program execution to stop. The severity level as well as the general nature of the error is designated by an "error type" with numbers from 0 to 5 . An error type 0 is no error; types 1 through 5 are progressively more severe. In most cases, you need not be concerned with our method of handling errors. For those interested, a complete description of the error-handling system is given in the Reference Material, which also describes how you can change the default actions and access the error code numbers.

Printing Results

None of the routines in IMSL MATH LIBRARY Special Functions print results (but error messages may be printed). The output is returned in FORTRAN variables, and you can print these yourself.

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the FORTRAN device unit number for printing. Because this routine obtains device unit numbers, it can be used to redirect the input or output. The section on Machine-Dependent Constants in the Reference Material contains a description of the routine UMACH.

Chapter 1: Elementary Functions

Routines

Evaluates the argument of a complex number CARG 11
Evaluates the cube root of a real or complex number CBRT 13
Evaluates $\left(e^{x}-1\right) / x$ for real or complex x EXPRL 15
Evaluates the complex base 10 logarithm, $\log _{10} z$ LOG10 17
Evaluates $\ln (x+1)$ for real or complex x ALNREL 19

Usage Notes

The "relative" function EXPRL is useful for accurately computing $e^{x}-1$ near $x=0$. Computing $e^{x}-1$ using $\operatorname{EXP}(\mathrm{X})-1$ near $x=0$ is subject to large cancellation errors.

Similarly, ALNREL can be used to accurately compute $\ln (x+1)$ near $x=0$. Using the routine ALOG to compute $\ln (x+1)$ near $x=0$ is subject to large cancellation errors in the computation of $1+\mathrm{x}$.

CARG

This function evaluates the argument of a complex number.

Function Return Value

CARG - Function value. (Output)
If $z=x+i y$, then $\arctan (y / x)$ is returned except when both x and y are zero. In this case, zero is returned.

Required Arguments

Z - Complex number for which the argument is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: CARG (Z)
Specific: The specific interface names are S_CARG and D_CARG.

FORTRAN 77 Interface

Single: \quad CARG (z)

Double: The double precision function name is ZARG.

Description

$\operatorname{Arg}(z)$ is the angle θ in the polar representation $z=|z| e^{i \theta}$, where $i=\sqrt{-1}$.
If $z=x+i y$, then $\theta=\tan ^{-1}(y / x)$ except when both x and y are zero. In this case, θ is defined to be zero

Example

In this example, $\operatorname{Arg}(1+i)$ is computed and printed.

```
USE CARG_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE
COMPLEX Z
Z = (1.0, 1.0)
VALUE = CARG (Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
```

!

```
99999 FORMAT (' CARG(', F6.3, ',',F6.3, ') = ', F6.3)
```

 END

Output

$\operatorname{CARG}(1.000,1.000)=0.785$

CBRT

This function evaluates the cube root.

Function Return Value

CBRT - Function value. (Output)

Required Arguments

X - Argument for which the cube root is desired. (Input)

FORTRAN 90 Interface

Generic:
Specific:
CBRT (X)
Specific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, and Z_CBRT.

FORTRAN 77 Interface

Single: $\quad \operatorname{CBRT}(X)$

Double: The double precision name is DCBRT.
Complex: The complex precision name is CCBRT.
Double Complex: The double complex precision name is ZCBRT .

Description

The function $\operatorname{CBRT}(\mathrm{X})$ evaluates $x^{1 / 3}$. All arguments are legal. For complex argument, x, the value of $|x|$ must not overflow.

Comments

For complex arguments, the branch cut for the cube root is taken along the negative real axis. The argument of the result, therefore, is greater than $-\pi / 3$ and less than or equal to $\pi / 3$. The other two roots are obtained by rotating the principal root by $3 \pi / 3$ and $\pi / 3$.

Examples

Example 1

In this example, the cube root of 3.45 is computed and printed.

```
USE CBRT_INT
USE UMACH_INT
IMPLICIT NONE
```

```
! Declare variables
    INTEGER NOUT
    REAL VALUE, X
! Compute
    x= = 3.45
    VALUE = CBRT(X)
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' CBRT(', F6.3, ') = ', F6.3)
    END
```


Output

```
CBRT( 3.450) = 1.511
```


Example 2

In this example, the cube root of $-3+0.0076 i$ is computed and printed.

```
    USE UMACH_INT
    USE CBRT_INT
    IMPLICIT NONE
```

! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
!
$z=(-3.0,0.0076)$
VALUE $=$ CBRT(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CBRT((', F7.4, ',', F7.4, ')) = (', \&
F6.3, ',', F6.3, ')')
END

Output

```
CBRT((-3.0000, 0.0076))=( 0.722, 1.248)
```


EXPRL

This function evaluates the exponential function factored from first order, $(\operatorname{EXP}(\mathrm{X})-1.0) / \mathrm{X}$.

Function Return Value

EXPRL - Function value. (Output)

Required Arguments

X - Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: EXPRL (x)
Specific: The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL.

FORTRAN 77 Interface

Single: EXPRL (x)
Double: The double precision function name is DEXPRL.
Complex: The complex name is CEXPRL.

Description

The function EXPRL (X) evaluates $\left(e^{x}-1\right) / x$. It will overflow if e^{x} overflows. For complex arguments, z , the argument z must not be so close to a multiple of $2 \pi i$ that substantial significance is lost due to cancellation. Also, the result must not overflow and $|\mathfrak{J} z|$ must not be so large that the trigonometric functions are inaccurate.

Examples

Example 1

In this example, $\operatorname{EXPRL}(0.184)$ is computed and printed.

```
    USE EXPRL_INT
    USE UMACH_INT
    IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
```

```
X=0.184
```

X=0.184
VALUE = EXPRL(X)

```
\(!\)
```

!
Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' EXPRL(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

EXPRL(0.184)=1.098

```

\section*{Example 2}

In this example, EXPRL(0.0076i) is computed and printed.
```

 USE EXPRL_INT
 USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
COMPLEX VALUE, Z
!
Z = (0.0, 0.0076)
VALUE = EXPRL(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' EXPRL((', F7.4, ',', F7.4, ')) = (', \&
F6.3, ',' F6.3, ')')
END

```

\section*{Output}
```

EXPRL((0.0000, 0.0076)) = (1.000, 0.004)

```

This function extends FORTRAN's generic \(\log 10\) function to evaluate the principal value of the complex common logarithm.

\section*{Function Return Value}

LOG10 - Complex function value. (Output)

\section*{Required Arguments}
\(\mathbf{Z}\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
```

 Generic: LOG10 (z)
 Specific: The specific interface names are CLOG10 and ZLOG10.
    ```

\section*{FORTRAN 77 Interface}

Complex: CLOG10 (Z)
Double complex:The double complex function name is ZLOG10.

\section*{Description}

The function LOG10 \((z)\) evaluates \(\log _{10}(z)\). The argument must not be zero, and \(|z|\) must not overflow.

\section*{Example}

In this example, the \(\log _{10}(0.0076 i)\) is computed and printed.
```

 USE LOG10_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 !
Z = (0.0, 0.0076)
VALUE = LOG10(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' LOG10((', F7.4, ',', F7.4, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

Output

LOG10 ( ( \(0.0000,0.0076))=(-2.119,0.682)\)

\section*{ALNREL}

This function evaluates the natural logarithm of one plus the argument, or, in the case of complex argument, the principal value of the complex natural logarithm of one plus the argument.

\section*{Function Return Value}

ALNREL - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for the function. (Input)

\section*{FORTRAN 90 Interface}

Generic: ALNREL (x)
Specific: The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL.

\section*{FORTRAN 77 Interface}

Single: ALNREL (x)
Double: The double precision name function is DLNREL.
Complex: The complex name is CLNREL.

\section*{Description}

For real arguments, the function ALNREL(X) evaluates \(\ln (1+x)\) for \(x>-1\). The argument \(x\) must be greater than -1.0 to avoid evaluating the logarithm of zero or a negative number. In addition, \(x\) must not be so close to -1.0 that considerable significance is lost in evaluating \(1+x\).

For complex arguments, the function CLNREL(z) evaluates \(\ln (1+z)\). The argument \(z\) must not be so close to -1 that considerable significance is lost in evaluating \(1+z\). If it is, a recoverable error is issued; however, \(z=-1\) is a fatal error because \(\ln (1+z)\) is infinite. Finally, \(|z|\) must not overflow.

Let \(\rho=|z|, z=x+i y\) and \(r^{2}=|1+z|^{2}=(1+x)^{2}+y^{2}=1+2 x+\rho^{2}\). Now, if \(\rho\) is small, we may evaluate \(\operatorname{CLNREL}(z)\) accurately by
\[
\begin{aligned}
\log (1+z) & =\log r+i \operatorname{Arg}(z+1) \\
& =1 / 2 \log r^{2}+i \operatorname{Arg}(z+1) \\
& =1 / 2 \operatorname{ALNREL}\left(2 x+\rho^{2}\right)+i \operatorname{CARG}(1+z)
\end{aligned}
\]

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ALNREL}(\mathrm{x})\) is accurate to less than one-half precision because x is \\
too near -1.0.
\end{tabular}
\end{tabular}

ALNREL evaluates the natural logarithm of \((1+X)\) accurate in the sense of relative error even when \(X\) is very small. This routine (as opposed to the intrinsic ALOG) should be used to maintain relative accuracy whenever \(X\) is small and accurately known.

\section*{Examples}

\section*{Example 1}

In this example, \(\ln (1.189)=\) ALNREL(0.189) is computed and printed.
```

 USE ALNREL_INT
 USE UMACH_INT
 IMPLICIT NONE
 D Declare variables
INTEGER NOUT
REAL VALUE, X
X = 0.189
VALUE = ALNREL(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ALNREL(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ALNREL(0.189) = 0.173

```

\section*{Example 2}

In this example, \(\ln (0.0076 i)=\) ALNREL \((-1+0.0076 i)\) is computed and printed.
```

 USE UMACH_INT
 USE ALNREL_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

```
```

! Compute
Z = (-1.0, 0.0076)
VALUE = ALNREL(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ALNREL((', F8.4, ',', F8.4, ')) = (', \&
F8.4, ',', F8.4, ')')
END

```

\section*{Output}
```

ALNREL((-1.0000, 0.0076)) = (-4.8796, 1.5708)

```

\section*{Chapter 2: Trigonometric and Hyperbolic Functions}

\section*{Routines}
2.1 Trigonometric Functions
Evaluates tan \(z\) for complex \(z\) ..... TAN ..... 25
Evaluates cot \(x\) for real \(x\) ..... COT ..... 27
Evaluates \(\sin x\) for \(x\) a real angle in degrees ..... 30
Evaluates \(\cos x\) for \(x\) a real angle in degrees ..... COSDG ..... 32
Evaluates \(\sin ^{-1} z\) for complex \(z\). ..... ASIN ..... 34
Evaluates \(\cos ^{-1} z\) for complex \(z\) ..... 36
Evaluates \(\tan ^{-1} z\) for complex \(z\) ..... 38
Evaluates \(\tan ^{-1}(x / y)\) for \(x\) and \(y\) complex ..... 40
2.2 Hyperbolic Functions
Evaluates sinh \(z\) for complex \(z\). ..... 42
Evaluates cosh \(z\) for complex \(z\) ..... COSH ..... 44
Evaluates tanh \(z\) for complex \(z\) ..... TANH ..... 46
2.3 Inverse Hyperbolic Functions
Evaluates \(\sinh ^{-1} x\) for real or complex \(x\) ASINH ..... 48
Evaluates \(\cosh ^{-1} x\) for real or complex \(x\) ..... ACOSH ..... 50
Evaluates \(\tanh ^{-1} x\) for real or complex \(x\) ATANH ..... 52

\section*{Usage Notes}

The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit complex plane. The branch cuts are shown below for \(z=x+i y\), i.e., \(x=\mathfrak{R z}\) and \(y=\mathfrak{J} z\) are the real and imaginary parts of \(z\), respectively.

\(\sin ^{-1} z, \cos ^{-1} z\) and \(\tanh ^{-1}(z)\)
 \(\tan ^{-1} z\) and \(\sinh ^{-1} z\)

\[
\cosh ^{-1} z
\]

Figure 2.1 - Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

This function extends FORTRAN's generic tan to evaluate the complex tangent.

\section*{Function Return Value}

TAN - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex number representing the angle in radians for which the tangent is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & TAN \((Z)\) \\
Specific: & The specific interface names are CTAN and ZTAN.
\end{tabular}

\section*{FORTRAN 77 Interface}

Complex: CTAN (Z)
Double complex:The double complex function name is ZTAN.

\section*{Description}

Let \(z=x+i y\). If \(|\cos z|^{2}\) is very small, that is, if \(x\) is very close to \(\pi / 2\) or \(3 \pi / 2\) and if \(y\) is small, then \(\tan z\) is nearly singular and a fatal error condition is reported. If \(|\cos z|^{2}\) is somewhat larger but still small, then the result will be less accurate than half precision. When \(2 x\) is so large that \(\sin 2 x\) cannot be evaluated to any nonzero precision, the following situation results. If \(|y|<3 / 2\), then CTAN cannot be evaluated accurately to better than one significant figure. If \(3 / 2 \leq|y|<-1 / 2 \ln \varepsilon / 2\), then CTAN can be evaluated by ignoring the real part of the argument; however, the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Comments}

Informational Error
\begin{tabular}{ll} 
Type Code & Description \\
3 & 2
\end{tabular} \begin{tabular}{l} 
Result of \(\operatorname{CTAN}(\mathrm{z})\) is accurate to less than one-half precision because the real \\
part of z is too near \(\pi / 2\) or \(3 \pi / 2\) when the imaginary part of z is near zero \\
or because the absolute value of the real part is very large and the absolute \\
value of the imaginary part is small.
\end{tabular}

\section*{Example}

In this example, \(\tan (1+i)\) is computed and printed.
```

 USE TAN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 !
1.0, 1.0
VALUE = TAN(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' TAN((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{TAN}((1.000,1.000))=(0.272,1.084)\)

\section*{COT}

This function evaluates the cotangent.

\section*{Function Value Return}

COT - Function value. (Output)

\section*{Required Arguments}
\(X\) - Angle in radians for which the cotangent is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) сот (x)
Specific: The specific interface names are сот, дсот, ССот, and zсот.

\section*{FORTRAN 77 Interface}

Single: \(\quad \operatorname{cot~(x)~}\)
Double: \(\quad\) The double precision function name is DCOT.
Complex: The complex name is ссот.
Double Complex: The double complex name is ZCOT.

\section*{Description}

For real x , the magnitude of \(x\) must not be so large that most of the computer word contains the integer part of \(x\). Likewise, \(x\) must not be too near an integer multiple of \(\pi\), although \(x\) close to the origin causes no accuracy loss. Finally, \(x\) must not be so close to the origin that \(\operatorname{CoT}(\mathrm{X}) \approx 1 / x\) overflows.

For complex arguments, let \(z=x+i y\). If \(|\sin z|^{2}\) is very small, that is, if \(x\) is very close to a multiple of \(\pi\) and if \(|y|\) is small, then \(\cot z\) is nearly singular and a fatal error condition is reported. If \(|\sin z|^{2}\) is somewhat larger but still small, then the result will be less accurate than half precision. When \(|2 x|\) is so large that \(\sin 2 x\) cannot be evaluated accurately to even zero precision, the following situation results. If \(|y|<3 / 2\), then CCOT cannot be evaluated accurately to be better than one significant figure. If \(3 / 2 \leq|y|<-1 / 2 \ln \varepsilon / 2\), where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision, then ССОT can be evaluated by ignoring the real part of the argument; however, the answer will be less accurate than half precision. Finally, \(|z|\) must not be so small that \(\cot z \approx 1 / z\) overflows.

\section*{Comments}
1. Informational error for Real arguments
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{cor}(\mathrm{X})\) is accurate to less than one-half precision because \(\operatorname{ABS}(\mathrm{X})\) is \\
too large, or X is nearly a multiple of \(\pi\).
\end{tabular}
\end{tabular}
2. Informational error for Complex arguments
\begin{tabular}{ll} 
Type Code & Description \\
3 & 2
\end{tabular} \begin{tabular}{l} 
Result of \(\operatorname{ccot}(\mathrm{z})\) is accurate to less than one-half precision because the real \\
part of z is too near a multiple of \(\pi\) when the imaginary part of z is zero, or \\
because the absolute value of the real part is very large and the absolute \\
value of the imaginary part is small.
\end{tabular}
3. Referencing \(\operatorname{COT}(\mathrm{X})\) is not the same as computing \(1.0 / \operatorname{TAN}(\mathrm{X})\) because the error conditions are quite different. For example, when \(X\) is near \(\pi / 2, \operatorname{TAN}(X)\) cannot be evaluated accurately and an error message must be issued. However, \(\operatorname{COT}(X)\) can be evaluated accurately in the sense of absolute error.

\section*{Examples}

\section*{Example 1}

In this example, \(\cot (0.3)\) is computed and printed.
```

 USE COT_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 0.3
VALUE = COT(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' COT(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

COT(0.300) = 3.233

```

\section*{Example 2}

In this example, \(\cot (1+i)\) is computed and printed.
```

 USE COT_INT
 USE UMACH_INT
 IMPLICIT NONE
Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

```
```

! Compute
Z = (1.0, 1.0)
VALUE = COT(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' COT((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

COT((1.000, 1.000)) = (0.218,-0.868)

```

\section*{SINDG}

This function evaluates the sine for the argument in degrees.

\section*{Function Return Value}

SINDG - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument in degrees for which the sine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: SINDG (x)
Specific: The specific interface names are S_SINDG and D_SINDG.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & SINDG (X) \\
Double: & The double precision function name is DSINDG.
\end{tabular}

\section*{Description}

To avoid unduly inaccurate results, the magnitude of \(x\) must not be so large that the integer part fills more than the computer word. Under no circumstances is the magnitude of \(x\) allowed to be larger than the largest representable integer because complete loss of accuracy occurs in this case.

\section*{Example}

In this example, \(\sin 45^{\circ}\) is computed and printed.
```

 USE SINDG_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X=45.0
VALUE = SINDG(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' SIN(', F6.3, ' deg) = ', F6.3)
END

```

\section*{Output}
```

SIN(45.000 deg) = 0.707.

```

\section*{COSDG}

This function evaluates the cosine for the argument in degrees.

\section*{Function Return Value}

COSDG - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument in degrees for which the cosine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) CoSDG (x)
Specific: The specific interface names are S_COSDG and D_COSDG.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & \(\operatorname{COSDG}(\mathrm{x})\) \\
Double: & The double precision function name is DCOSDG.
\end{tabular}

\section*{Description}

To avoid unduly inaccurate results, the magnitude of \(x\) must not be so large that the integer part fills more than the computer word. Under no circumstances is the magnitude of \(x\) allowed to be larger than the largest representable integer because complete loss of accuracy occurs in this case.

\section*{Example}

In this example, \(\cos 100^{\circ}\) computed and printed.
```

 USE COSDG_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 100.0
VALUE = COSDG(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' COS(', F6.2, ' deg) = ', F6.3)
END

```

\section*{Output}
```

COS(100.00 deg) = -0.174

```

\section*{ASIN}

This function extends FORTRAN's generic ASIN function to evaluate the complex arc sine.

\section*{Function Return Value}

ASIN - Complex function value in units of radians and the real part in the first or fourth quadrant. (Output)

\section*{Required Arguments}

ZINP - Complex argument for which the arc sine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ASIN (ZINP)
Specific: \(\quad\) The specific interface names are CASIN and ZASIN.

\section*{FORTRAN 77 Interface}

Complex: CASIN (ZINP)
Double complex: The double complex function name is ZASIN.

\section*{Description}

Almost all arguments are legal. Only when \(|z|>b / 2\) can an overflow occur. Here, \(b=\operatorname{AMACH}(2)\) is the largest floating point number. This error is not detected by ASIN.

See Pennisi (1963, page 126) for reference.

\section*{Example}

In this example, \(\sin ^{-1}(1-i)\) is computed and printed.
```

USE ASIN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
COMPLEX VALUE, Z
Z = (1.0, -1.0)
VALUE = ASIN(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

```
\(!\)
```

99999 FORMAT (' ASIN((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

Output
```

ASIN((1.000,-1.000))=(0.666,-1.061)

```

\section*{ACOS}

This function extends FORTRAN's generic ACOS function to evaluate the complex arc cosine.

\section*{Function Return Value}

ACOS - Complex function value in units of radians with the real part in the first or second quadrant. (Output)

\section*{Required Arguments}
\(\mathbf{Z}\) - Complex argument for which the arc cosine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ACOS (z)
Specific: The specific interface names are CACOS and ZACOS.

\section*{FORTRAN 77 Interface}

Complex: CACOS (z)
Double complex: The double complex function name is ZACOS.

\section*{Description}

Almost all arguments are legal. Only when \(|z|>b / 2\) can an overflow occur. Here, \(b=\operatorname{AMACH}(2)\) is the largest floating point number. This error is not detected by ACOS.

\section*{Example}

In this example, \(\cos ^{-1}(1-i)\) is computed and printed.
```

 USE ACOS_INT
 USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
Z = (1.0, -1.0)
VALUE = ACOS(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ACOS((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ACOS((1.000,-1.000)) = (0.905, 1.061)

```

\section*{ATAN}

This function extends FORTRAN's generic function ATAN to evaluate the complex arc tangent.

\section*{Function Return Value}

ATAN - Complex function value in units of radians with the real part in the first or fourth quadrant. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the arc tangent is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ATAN (z)
Specific: The specific interface names are CATAN and ZATAN.

\section*{FORTRAN 77 Interface}

\section*{Complex: CATAN (Z)}

Double complex:The double complex function name is ZATAN.

\section*{Description}

The argument \(z\) must not be exactly \(\pm i\), because \(\tan ^{-1} z\) is undefined there. In addition, \(z\) must not be so close to \(\pm i\) that substantial significance is lost.

\section*{Comments}

Informational error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ATAN}(z)\) is accurate to less than one-half precision because \(\left|z^{2}\right|\) is \\
too close to -1.0.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\tan ^{-1}(0.01-0.01 i)\) is computed and printed.
```

 USE ATAN_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

```
```

! Compute
Z = (0.01, 0.01)
VALUE = ATAN(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ATAN((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{ATAN}((0.010,0.010))=(0.010,0.010)\)

\section*{ATAN2}

This function extends FORTRAN's generic function ATAN2 to evaluate the complex arc tangent of a ratio.

\section*{Function Return Value}

ATAN2 - Complex function value in units of radians with the real part between \(-\pi\) and \(\pi\). (Output)

\section*{Required Arguments}

CSN - Complex numerator of the ratio for which the arc tangent is desired. (Input)
CCS - Complex denominator of the ratio. (Input)

\section*{FORTRAN 90 Interface}

Generic: ATAN2 (CSN, CCS)
Specific: \(\quad\) The specific interface names are CATAN2 and ZATAN2.

\section*{FORTRAN 77 Interface}

Complex: CATAN2 (CSN, CCS)
Double complex: The double complex function name is ZATAN2.

\section*{Description}

Let \(z_{1}=\) CSN and \(z_{2}=\) CCS. The ratio \(z=z_{1} / z_{2}\) must not be \(\pm i\) because \(\tan ^{-1}( \pm i)\) is undefined. Likewise, \(z_{1}\) and \(z_{2}\) should not both be zero. Finally, \(z\) must not be so close to \(\pm i\) that substantial accuracy loss occurs.

\section*{Comments}

The result is returned in the correct quadrant (modulo \(2 \pi\) ).

\section*{Example}

In this example,
\[
\tan ^{-1} \frac{(1 / 2)+(i / 2)}{2+i}
\]
is computed and printed.
```

USE ATAN2_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
COMPLEX VALUE, X, Y
!
X = (2.0, 1.0)
Y = (0.5, 0.5)
VALUE = ATAN2(Y, X)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Y, X, VALUE
99999 FORMAT (' ATAN2((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3,\&
')) = (', F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{ATAN} 2((0.500,0.500),(2.000,1.000))=(0.294,0.092)\)

\section*{SINH}

This function extends FORTRAN's generic function SINH to evaluate the complex hyperbolic sine.

\section*{Function Return Value}

SINH - Complex function value. (Output)

\section*{Required Arguments}

Z - Complex number representing the angle in radians for which the complex hyperbolic sine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: SINH (z)
Specific: The specific interface names are CSINH and ZSINH.

\section*{FORTRAN 77 Interface}

Complex: CSINH (Z)
Double complex: The double complex function name is ZSINH.

\section*{Description}

The argument \(z\) must satisfy
\[
\left|\mathfrak{J}_{z}\right| \leq 1 / \sqrt{\varepsilon}
\]
where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision and \(\mathfrak{I z}\) is the imaginary part of \(z\).

\section*{Example}

In this example, \(\sinh (5-i)\) is computed and printed.
```

USE SINH_INT
USE UMACH_INT
IMPLICIT NONE
COMPLEX VALUE, Z
Z = (5.0, -1.0)
VALUE = SINH(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

```
```

99999 FORMAT (' SINH((', F6.3, ',', F6.3, ')) = (',\&
F7.3, ',', F7.3, ')')
END

```

Output
```

SINH((5.000,-1.000))=(40.092,-62.446)

```

\section*{COSH}

The function extends FORTRAN's generic function COSH to evaluate the complex hyperbolic cosine.

\section*{Function Return Value}

COSH - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex number representing the angle in radians for which the hyperbolic cosine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad \cosh (z)\)
Specific: The specific interface names are CCOSH and ZCOSH.

\section*{FORTRAN 77 Interface}

Complex: Ccosh (z)
Double complex: The double complex function name is ZCOSH.

\section*{Description}

Let \(\varepsilon=\operatorname{AMACH}(4)\) be the machine precision. If \(|\mathfrak{J} z|\) is larger than
\[
1 / \sqrt{\varepsilon}
\]
then the result will be less than half precision, and a recoverable error condition is reported. If \(|\mathfrak{J} z|\) is larger than \(1 / \varepsilon\), the result has no precision and a fatal error is reported. Finally, if \(|\mathfrak{R z}|\) is too large, the result overflows and a fatal error results. Here, \(\mathfrak{R z}\) and \(\mathfrak{J z}\) represent the real and imaginary parts of \(z\), respectively.

\section*{Example}

In this example, \(\cosh (-2+2 i)\) is computed and printed.
```

USE COSH_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
COMPLEX VALUE, Z
Z = (-2.0, 2.0)
VALUE = COSH(Z)
! Print the results
CALL UMACH (2, NOUT)

```
\(!\)
!

WRITE (NOUT, 99999) Z, VALUE
99999 FORMAT (' \(\operatorname{COSH}((', F 6.3, ', ', F 6.3, '))=(', \&\) F6.3, ',', F6.3, ')')
END

\section*{Output}
\(\operatorname{COSH}((-2.000,2.000))=(-1.566,-3.298)\)

\section*{TANH}

This function extends FORTRAN's generic function TANH to evaluate the complex hyperbolic tangent.

\section*{Function Return Value}

TANH - Complex function value. (Output)

\section*{Required Arguments}

Z - Complex number representing the angle in radians for which the hyperbolic tangent is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) TANH (z)
Specific: The specific interface names are CTANH and ZTANH.

\section*{FORTRAN 77 Interface}

\section*{Complex: CTANH (Z)}

Double complex: The double complex function name is ZTANH.

\section*{Description}

Let \(z=x+i y\). If \(|\cosh z|^{2}\) is very small, that is, if \(y \bmod \pi\) is very close to \(\pi / 2\) or \(3 \pi / 2\) and if \(x\) is small, then \(\tanh z\) is nearly singular; a fatal error condition is reported. If \(|\cosh z|^{2}\) is somewhat larger but still small, then the result will be less accurate than half precision. When \(2 y(z=x+i y)\) is so large that \(\sin 2 y\) cannot be evaluated accurately to even zero precision, the following situation results. If \(|x|<3 / 2\), then TANH cannot be evaluated accurately to better than one significant figure. If \(3 / 2 \leq|y|<-1 / 2 \ln (\varepsilon / 2)\), then TANH can be evaluated by ignoring the imaginary part of the argument; however, the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\tanh (1+i)\) is computed and printed.
```

 USE TANH_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 Z = (1.0, 1.0)
VALUE = TANH(Z)

```
```

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' TANH((', F6.3, ',', F6.3, ')) = (',\&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

TANH((1.000, 1.000))=(1.084, 0.272)

```

\section*{ASINH}

This function evaluates the arc hyperbolic sine.

\section*{Function Return Value}

ASINH - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the arc hyperbolic sine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ASINH (x)
Specific: The specific interface names are ASINH, DASINH, CASINH, and ZASINH.

\section*{FORTRAN 77 Interface}

Single: ASINH (x)
Double: The double precision function name is DASINH.
Complex: The complex name is CASINH.
Double Complex: The double complex name is ZASINH.

\section*{Description}

The function ASINH ( X ) computes the inverse hyperbolic sine of \(x, \sinh ^{-1} x\).
For complex arguments, almost all arguments are legal. Only when \(|z|>b / 2\) can an overflow occur, where \(b=\) AMACH (2) is the largest floating point number. This error is not detected by ASINH.

\section*{Examples}

\section*{Example 1}

In this example, \(\sinh ^{-1}(2.0)\) is computed and printed.
```

 USE ASINH_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X

```
```

X=2.0

```
X=2.0
VALUE = ASINH(X)
```

VALUE = ASINH(X)

```
\(!\)
```

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ASINH(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ASINH(2.000)=1.444

```

\section*{Example 2}

In this example, \(\sinh ^{-1}(-1+i)\) is computed and printed.
```

 USE ASINH_INT
 USE UMACH_INT
 IMPLICIT NONE
 Declare variables
 COMPLEX VALUE, Z
 ! Compute
Z = (-1.0, 1.0)
VALUE = ASINH(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ASINH((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ASINH((-1.000, 1.000))=(-1.061, 0.666)

```

\section*{ACOSH}

This function evaluates the arc hyperbolic cosine.

\section*{Function Return Value}

ACOSH - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the arc hyperbolic cosine is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ACOSH (x)
Specific: The specific interface names are ACOSH, DACOSH, CACOSH, and ZACOSH.

\section*{FORTRAN 77 Interface}
Single: ACOSH (x)

Double: The double precision function name is DACOSH.
Complex: The complex name is CACOSH.
Double Complex: The double complex name is ZACOSH.

\section*{Description}

The function \(\operatorname{ACOSH}(\mathrm{X})\) computes the inverse hyperbolic cosine of \(x, \cosh ^{-1} x\).
For complex arguments, almost all arguments are legal. Only when \(|z|>b / 2\) can an overflow occur, where \(b=\operatorname{AMACH}(2)\) is the largest floating point number. This error is not detected by ACOSH.

\section*{Comments}

The result of \(\operatorname{ACOSH}(\mathrm{X})\) is returned on the positive branch. Recall that, like \(\operatorname{SQRT}(\mathrm{X}), \operatorname{ACOSH}(\mathrm{X})\) has multiple values.

\section*{Examples}

\section*{Example 1}

In this example, \(\cosh ^{-1}(1.4)\) is computed and printed.
```

USE ACOSH_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
!
X = 1.4
VALUE = ACOSH(X)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ACOSH(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ACOSH(1.400) = 0.867

```

\section*{Example 2}

In this example, \(\cosh ^{-1}(1-i)\) is computed and printed.
```

 USE ACOSH_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
!
Z = (1.0, -1.0)
VALUE = ACOSH(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ACOSH((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ACOSH((1.000,-1.000)) = (-1.061, 0.905)

```

\section*{ATANH}

This function evaluates the arc hyperbolic tangent.

\section*{Function Return Value}

ATANH - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the arc hyperbolic tangent is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ATANH (x)
Specific: The specific interface names are ATANH, DATANH, CATANH, and ZATANH

\section*{FORTRAN 77 Interface}
Single: ATANH (x)

Double: \(\quad\) The double precision function name is DATANH.
Complex: The complex name is CATANH.
Double Complex: The double complex name is ZATANH.

\section*{Description}

ATANH ( X ) computes the inverse hyperbolic tangent of \(x, \tanh ^{-1} x\). The argument \(x\) must satisfy
\[
|x|<1-\sqrt{\varepsilon}
\]
where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision. Note that \(|x|\) must not be so close to one that the result is less accurate than half precision.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ATANH}(\mathrm{X})\) is accurate to less than one-half precision because the \\
absolute value of the argument is too close to 1.0.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\tanh ^{-1}(-1 / 4)\) is computed and printed.
```

 USE ATANH_INT
 USE UMACH_INT
 IMPLICIT NONE
 REAL VALUE, X
 ! Compute
X=-0.25
VALUE = ATANH(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ATANH(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ATANH(-0.250)=-0.255

```

\section*{Example 2}

In this example, \(\tanh ^{-1}(1 / 2+i / 2)\) is computed and printed.
```

 USE ATANH_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 !
Z = (0.5, 0.5)
VALUE = ATANH(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ATANH((', F6.3, ',', F6.3, ')) = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ATANH((0.500, 0.500)) = (0.402, 0.554)

```

\section*{Chapter 3: Exponential Integrals and Related Functions}

\section*{Routines}
Evaluates the exponential integral, \(\mathrm{Ei}(x)\) ..... El 57
Evaluates the exponential integral, \(E_{1}(x)\) ..... E1 59
Evaluates the scaled exponential integrals, integer order, \(E_{n}(x)\) ENE ..... 61
Evaluates the logarithmic integral, li( \(x\) ) ..... ALI 63
Evaluates the sine integral, \(\operatorname{Si}(x)\) ..... SI 66
Evaluates the cosine integral, \(\mathrm{Ci}(x)\) ..... CI 68
Evaluates the cosine integral (alternate definition) ..... 70
Evaluates the hyperbolic sine integral, \(\operatorname{Shi}(x)\) ..... SHI ..... 72
Evaluates the hyperbolic cosine integral, \(\mathrm{Chi}(x)\) ..... CHI ..... 74
Evaluates the hyperbolic cosine integral (alternate definition) CINH ..... 76

\section*{Usage Notes}

The notation used in this chapter follows that of Abramowitz and Stegun (1964).
The following is a plot of the exponential integral functions that can be computed by the routines described in this chapter.


Figure 3.1 — Plot of \(\mathrm{e}^{x} E(x), E_{1}(x)\) and \(E i(x)\)

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal value for arguments less than zero.

\section*{Function Return Value}

EI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & EI (X) \\
Specific: & The specific interface names are S_EI and D_EI.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & EI (X) \\
Double: & The double precision function name is DEI.
\end{tabular}

\section*{Description}

The exponential integral, \(\operatorname{Ei}(x)\), is defined to be
\[
E_{1}(x)=\int_{x}^{\infty} e^{-t} / t d t \text { for } x \neq 0
\]

The argument \(x\) must be large enough to insure that the asymptotic formula \(e^{x} / x\) does not underflow, and \(x\) must not be so large that \(e^{x}\) overflows.

\section*{Comments}

If principal values are used everywhere, then for all \(\mathrm{X}, \mathrm{EI}(\mathrm{X})=-\mathrm{E} 1(-\mathrm{X})\) and \(\mathrm{E} 1(\mathrm{X})=-\mathrm{EI}(-\mathrm{X})\).

\section*{Example}

In this example, \(\mathrm{Ei}(1.15)\) is computed and printed.
```

 USE EI_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
    ```
```

 REAL VALUE, X
 ! Compute
X = 1.15
VALUE = EI(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' EI(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

EI(1.150) = 2.304

```

E1

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal value of the integral for arguments less than zero.

\section*{Function Return Value}

E1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the integral is to be evaluated. (Input)

\section*{FORTRAN 90 Interface}

Generic: E1 (X)
Specific: The specific interface names are S_E1 and D_E1.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & E1 (X) \\
Double: & The double precision function name is DE1.
\end{tabular}

\section*{Description}

The alternate definition of the exponential integral, \(E_{1}(x)\), is
\[
E_{1}(x)=\int_{x}^{\infty} e^{-t} / t d t \text { for } x \neq 0
\]

The path of integration must exclude the origin and not cross the negative real axis.
The argument \(x\) must be large enough that \(e^{-x}\) does not overflow, and \(x\) must be small enough to insure that \(e^{-x} / x\) does not underflow.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & The function underflows because x is too large.
\end{tabular}

\section*{Example}

In this example, \(E_{1}(1.3)\) is computed and printed.
```

 USE E1_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
 !
X=1.3
VALUE = E1(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' E1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

E1(1.300)=0.135

```

\section*{ENE}

Evaluates the exponential integral of integer order for arguments greater than zero scaled by \(\operatorname{ExP}(\mathrm{x})\).

\section*{Required Arguments}
\(X\) - Argument for which the integral is to be evaluated. (Input) It must be greater than zero.
\(N\) - Integer specifying the maximum order for which the exponential integral is to be calculated. (Input)
\(F\) - Vector of length N containing the computed exponential integrals scaled by \(\operatorname{ExP}(\mathrm{x})\). (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL ENE (X, N, F)
Specific: The specific interface names are S_ENE and D_ENE.

\section*{FORTRAN 77 Interface}
Single: CALL ENE ( \(\mathrm{X}, \mathrm{N}, \mathrm{F}\) )

Double: \(\quad\) The double precision function name is DENE.

\section*{Description}

The scaled exponential integral of order \(n, E_{n}(x)\), is defined to be
\[
E_{n}(x)=e^{x} \int_{1}^{\infty} e^{-x t} t^{-n} d t \text { for } x>0
\]

The argument \(x\) must satisfy \(x>0\). The integer \(n\) must also be greater than zero. This code is based on a code due to Gautschi (1974).

\section*{Example}

In this example, \(E_{z}(10)\) for \(n=1, \ldots, n\) is computed and printed.
```

 USE ENE_INT
 USE UMACH_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=10)
INTEGER K, NOUT
REAL F(N), X

```
!
```

!
Compute
X = 10.0
CALL ENE (X, N, F)
!
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT, 99999) K, X, F(K)
10 CONTINUE
99999 FORMAT (' E sub ', I2, ' (', F6.3, ') = ', F6.3)
END

```

\section*{Output}
E sub \(1(10.000)=0.092\)
E sub \(2(10.000)=0.084\)
E sub \(3(10.000)=0.078\)
E sub \(4(10.000)=0.073\)
E sub \(5(10.000)=0.068\)
E sub \(6(10.000)=0.064\)
E sub \(7(10.000)=0.060\)
E sub \(8(10.000)=0.057\)
E sub \(9(10.000)=0.054\)
E sub \(10(10.000)=0.051\)

\section*{ALI}

This function evaluates the logarithmic integral.

\section*{Function Return Value}

ALI-Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the logarithmic integral is desired. (Input) It must be greater than zero and not equal to one.

\section*{FORTRAN 90 Interface}

Generic: ALI (X)
Specific: The specific interface names are S_ALI and D_ALI.

\section*{FORTRAN 77 Interface}
Single: ALI (X)

Double: \(\quad\) The double precision function name is DALI.

\section*{Description}

The logarithmic integral, \(\mathrm{li}(x)\), is defined to be
\[
\operatorname{li}(x)=-\int_{0}^{x} \frac{d t}{\ln t} \text { for } x>0 \text { and } x \neq 1
\]

The argument \(x\) must be greater than zero and not equal to one. To avoid an undue loss of accuracy, \(x\) must be different from one at least by the square root of the machine precision.

The function \(\operatorname{li}(x)\) approximates the function \(\pi(x)\), the number of primes less than or equal to \(x\). Assuming the Riemann hypothesis (all non-real zeros of \(\zeta(z)\) are on the line \(\Re z=1 / 2\) ), then
\[
\operatorname{li}(x)-\pi(x)=O(\sqrt{x} \ln x)
\]


Figure 3.2 - Plot of \(\mathrm{li}(x)\) and \(\pi(x)\)

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ALI}(\mathrm{x})\) is accurate to less than one-half precision because x is too \\
close to 1.0.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\mathrm{li}(2.3)\) is computed and printed.
```

USE ALI_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 2.3
VALUE = ALI(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ALI(', F6.3, ') = ', F6.3)
END

```
\(!\)

Output
ALI (2.300) \(=1.439\)

This function evaluates the sine integral.

\section*{Function Return Value}
\(S I\) - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: SI (X)
Specific: \(\quad\) The specific interface names are S_SI and D_SI.

\section*{FORTRAN 77 Interface}

Single: SI (X)
Double: \(\quad\) The double precision function name is DSI.

\section*{Description}

The sine integral, \(\operatorname{Si}(x)\), is defined to be
\[
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
\]

If
\[
|x|>1 / \sqrt{\varepsilon}
\]
the answer is less accurate than half precision, while for \(|x|>1 / \varepsilon\), the answer has no precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\operatorname{Si}(1.25)\) is computed and printed.
```

USE SI_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X

```
```

! Compute
X=1.25
VALUE = SI(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' SI(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{SI}(1.250)=1.146\)

\section*{Cl}

This function evaluates the cosine integral.

\section*{Function Return Value}
\(C I-\) Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be greater than zero.

\section*{FORTRAN 90 Interface}

Generic: CI (x)
Specific: The specific interface names are S_CI and D_CI.

\section*{FORTRAN 77 Interface}
Single: CI (X)

Double: \(\quad\) The double precision function name is DCI.

\section*{Description}

The cosine integral, \(\mathrm{Ci}(x)\), is defined to be
\[
\operatorname{Ci}(x)=\gamma+\ln (x)+\int_{0}^{x} \frac{\cos t-1}{t} d t
\]

Where \(\gamma \approx 0.57721566\) is Euler's constant.
The argument \(x\) must be larger than zero. If
\[
x>1 / \sqrt{\varepsilon}
\]
then the result will be less accurate than half precision. If \(x>1 / \varepsilon\), the result will have no precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\mathrm{Ci}(1.5)\) is computed and printed.
```

USE CI_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 1.5
VALUE = CI(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' CI(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{CI}(1.500)=0.470\)

\section*{CIN}

This function evaluates a function closely related to the cosine integral.

\section*{Function Return Value}

CIN - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & CIN (x) \\
Specific: & The specific interface names are S_CIN and D_CIN.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: CIN (x)

Double: \(\quad\) The double precision function name is DCIN.

\section*{Description}

The alternate definition of the cosine integral, \(\operatorname{Cin}(x)\), is
\[
\operatorname{Cin}(x)=\int_{0}^{x} \frac{1-\cos t}{t} d t
\]

For
\[
0<|x|<\sqrt{s}
\]
where \(s=\operatorname{AMACH}(1)\) is the smallest representable positive number, the result underflows. For
\[
|x|>1 / \sqrt{\varepsilon}
\]
the answer is less accurate than half precision, while for \(|x|>1 / \varepsilon\), the answer has no precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because x is too small.
\end{tabular}

\section*{Example}

In this example, \(\operatorname{Cin}(2 \pi)\) is computed and printed.
```

 USE CIN_INT
 USE UMACH_INT
 USE CONST_INT
 IMPLICIT NONE
 ! Declare variables
!
INTEGER NOUT
REAL VALUE, X
X = CONST('pi')
X = 2.0* X
VALUE = CIN(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' CIN(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

CIN(6.283)=2.438

```

\section*{SHI}

This function evaluates the hyperbolic sine integral.

\section*{Function Return Value}

SHI-function value. (Output) SHI equals
\[
\int_{0}^{x} \sinh (t) / t d t
\]

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & SHI (X) \\
Specific: & The specific interface names are \(S \_\)SHI and D_SHI.
\end{tabular}

\section*{FORTRAN 77 Interface}

Single:
Double:

The double precision function name is DSHI.

\section*{Description}

The hyperbolic sine integral, \(\operatorname{Shi}(x)\), is defined to be
\[
\operatorname{Shi}(x)=\int_{0}^{x} \frac{\sinh t}{t} d t
\]

The argument \(x\) must be large enough that \(e^{-x} / x\) does not underflow, and \(x\) must be small enough that \(e^{x}\) does not overflow.

\section*{Example}

In this example, Shi(3.5) is computed and printed.
```

USE SHI_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, X

```
```

! Compute
X=3.5
VALUE = SHI (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' SHI(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

SHI(3.500)=6.966

```

\section*{CHI}

This function evaluates the hyperbolic cosine integral.

\section*{Function Return Value}

CHI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: CHI (x)
Specific: \(\quad\) The specific interface names are S_CHI and D_CHI.

\section*{FORTRAN 77 Interface}

Single: CHI (x)
Double: \(\quad\) The double precision function name is DCHI.

\section*{Description}

The hyperbolic cosine integral, \(\operatorname{Chi}(x)\), is defined to be
\[
\operatorname{Chi}(x)=\gamma+\ln x+\int_{0}^{x} \frac{\cosh t-1}{t} d t \text { for } x>0
\]
where \(\gamma \approx 0.57721566\) is Euler's constant.
The argument \(x\) must be large enough that \(e^{-x} / x\) does not underflow, and \(x\) must be small enough that \(e^{x}\) does not overflow.

\section*{Comments}

When X is negative, the principal value is used.

\section*{Example}

In this example, \(\mathrm{Chi}(2.5)\) is computed and printed.
```

USE CHI_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 2.5
VALUE = CHI (X)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' CHI(',F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

CHI(2.500)=3.524

```

\section*{CINH}

This function evaluates a function closely related to the hyperbolic cosine integral.

\section*{Function Return Value}

CINH - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & CINH (X) \\
Specific: & The specific interface names are S_CINH and D_CINH.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: CINH (x)

Double: \(\quad\) The double precision function name is DCINH.

\section*{Description}

The alternate definition of the hyperbolic cosine integral, \(\operatorname{Cinh}(x)\), is
\[
\operatorname{Cinh}(x)=\int_{0}^{x} \frac{\cosh t-1}{t} d t
\]

For
\[
0<|x|<2 \sqrt{s}
\]
where \(s=\operatorname{AMACH}(1)\) is the smallest representable positive number, the result underflows. The argument \(x\) must be large enough that \(e^{-x} / x\) does not underflow, and \(x\) must be small enough that \(e^{x}\) does not overflow.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because x is too small.
\end{tabular}

\section*{Example}

In this example, \(\operatorname{Cinh}(2.5)\) is computed and printed.


\section*{Output}

CINH ( 2.500 ) \(=2.031\)

\section*{Chapter 4: Gamma Function and Related Functions}

\section*{Routines}
4.1 Factorial Function
Evaluates the factorial, n! ..... FAC ..... 81
Evaluates the binomial coefficient. ..... BINOM ..... 83
4.2 Gamma Function
Evaluates the real or complex gamma function, \(\Gamma(x)\) GAMMA ..... 85
Evaluates the reciprocal of the real or complex gamma function, \(1 / \Gamma(x)\) ..... GAMR ..... 88
Evaluates the real or complex function, \(\ln |\gamma(x)|\) ..... ALNGAM 90
Evaluates the log abs gamma function and its sign ALGAMS ..... 93
4.3 Incomplete Gamma Function
Evaluates the incomplete gamma function, \(\gamma(a, x)\) ..... GAMI ..... 95
Evaluates the complementary incomplete gamma function, \(\Gamma(a, x)\) ..... 97
Evaluates Tricomi's incomplete gamma function, \(\mathrm{V}^{\star}(a, x)\) ..... GAMIT 99
4.4 Psi Function
Evaluates the real or complex psi function, \(\psi(x)\) ..... 101
Evaluates the real psi1 function, \(\Psi_{1}(x)\) ..... 103
4.5 Pochhammer's Function
Evaluates Pochhammer's generalized symbol, (a) \(x_{x}\) POCH ..... 105
Evaluates Pochhammer's symbol starting from the first order POCH1 ..... 107
4.6 Beta Function
Evaluates the real or complex beta function, \(\beta(a, b)\) ..... BETA ..... 109
Evaluates the log of the real or complex beta function, In \(\beta(a, b)\) ALBETA ..... 112
Evaluates the incomplete beta function, \(I_{x}(a, b)\) .BETAI ..... 114

\section*{Usage Notes}

The notation used in this chapter follows that of Abramowitz and Stegun (1964).
The following is a table of the functions defined in this chapter:
\begin{tabular}{ll} 
FAC & \(n!=\Gamma(n+1)\) \\
BINOM & \(n!/ m!(n-m)!, 0 \leq m \leq n\) \\
GAMMA & \(\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x \neq 0,-1,-2, \ldots\) \\
GAMR & \(1 / \Gamma(x)\) \\
ALNGAM & \(\ln |\Gamma(x)|, x \neq 0,-1,-2, \ldots\) \\
ALGAMS & \(\ln |\Gamma(x)|\) and sign \(\Gamma(x), x \neq 0,-1,-2, \ldots\) \\
GAMI & \(\gamma(a, x)=\int_{0}^{x} t^{a-1} e^{-t} d t, a>0, x \geq 0\) \\
GAMIC & \(\Gamma(a, x)=\int_{x}^{\infty} t^{a-1} e^{-t} d t, x>0\) \\
GAMIT & \(\gamma^{*}(a, x)=\left(x^{-a} / \Gamma(a)\right) \gamma(a, x), x \geq 0\) \\
PSI & \(\Psi(x)=\Gamma^{\prime}(x) / \Gamma(x), x \neq 0,-1,-2, \ldots\) \\
PSI1 & \(\Psi_{1}(x)=\mathrm{d}^{2} / \mathrm{d} x^{2} \ln \Gamma(x), x \neq 0,-1,-2, \ldots\) \\
POCH & \((a)_{x}=\Gamma(a+x) / \Gamma(a)\), if \(a+x=0,-1,-2, \ldots\). then \(a\) must \(=0,-1,-2, \ldots\) \\
POCH1 & \(\left((a)_{x}-1\right) / x\), if \(a+x=0,-1,-2, \ldots\) then \(a\) must \(=0,-1,-2, \ldots\) \\
BETA & \(\beta\left(x_{1}, x_{2}\right)=\Gamma\left(x_{1}\right) \Gamma\left(x_{2}\right) / \Gamma\left(x_{1}+x_{2}\right), x_{1}>0\) and \(x_{2}>0\) \\
CBETA & \(\beta\left(z_{1}, z_{2}\right)=\Gamma\left(z_{1}\right) \Gamma\left(z_{2}\right) / \Gamma\left(z_{1}+z_{2}\right), z_{1}>0\) and \(z_{2}>0\) \\
ALBETA & \(\ln \beta(a, b), a>0, b>0\) \\
BETAI & \(I_{x}(a, b)=\beta_{x}(a, b) / \beta(a, b), 0 \leq x \leq 1, a>0, b>0\) \\
&
\end{tabular}

This function evaluates the factorial of the argument.

\section*{Function Return Value}

FAC - Function value. (Output)
See Comments.

\section*{Required Arguments}
\(N\) - Argument for which the factorial is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic:
FAC (v)
Specific: The specific interface names are S_FAC and D_FAC.

\section*{FORTRAN 77 Interface}
Single: \(\quad\) FAC (N)

Double: \(\quad\) The double precision function name is DFAC.

\section*{Description}

The factorial is computed using the relation \(n!=\Gamma(n+1)\). The function \(\Gamma(x)\) is defined in GAMMA. The argument \(n\) must be greater than or equal to zero, and it must not be so large that \(n\) ! overflows. Approximately, \(n\) ! overflows when \(n^{n} e^{-n}\) overflows.

\section*{Comments}

If the generic version of this function is used, the immediate result must be stored in a variable before use in an expression. For example:
```

X = FAC(6)
Y = SQRT(X)

```
must be used rather than
\(\mathrm{Y}=\mathrm{SQRT}(\mathrm{FAC}(6))\).
If this is too much of a restriction on the programmer, then the specific name can be used without this restriction.
To evaluate the factorial for nonintegral values of the argument, the gamma function should be used. For large values of the argument, the log gamma function should be used.

\section*{Example}

In this example, \(6!\) is computed and printed.


\section*{Output}
\(\operatorname{FAC}(6)=720.00\)

\section*{BINOM}

This function evaluates the binomial coefficient.

\section*{Function Return Value}

BINOM - Function value. (Output)
See Comment 1.

\section*{Required Arguments}
\(N\) - First parameter of the binomial coefficient. (Input) \(N\) must be nonnegative.
\(\boldsymbol{M}\) — Second parameter of the binomial coefficient. (Input)
\(M\) must be nonnegative and less than or equal to \(N\).

\section*{FORTRAN 90 Interface}

Generic: BINOM ( \(\mathrm{N}, \mathrm{M}\) )
Specific: The specific interface names are S_BINOM and D_BINOM.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) BINOM ( \(\mathrm{N}, \mathrm{M}\) )
Double: The double precision function name is DBINOM.

\section*{Description}

The binomial function is defined to be
\[
\binom{n}{m}=\frac{n!}{m!(n-m)!}
\]
with \(n \geq m \geq 0\). Also, \(n\) must not be so large that the function overflows.

\section*{Comments}
1. If the generic version of this function is used, the immediate result must be stored in a variable before use in an expression. For example:
\[
X=\operatorname{BINOM}(9,5) Y=\operatorname{SQRT}(X)
\]
must be used rather than
```

Y = SQRT(BINOM(9, 5)).

```

If this is too much of a restriction on the programmer, then the specific name can be used without this restriction.
2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete beta function or \(\log\) beta function should be used.

\section*{Example}

In this example, \(\binom{9}{5}\) is computed and printed.
```

 USE BINOM_INT
 USE UMACH_INT
 IMPLICIT NONE
 !
INTEGER M, N, NOUT
REAL VALUE
N = 9
M = 5
VALUE = BINOM(N, M)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) N, M, VALUE
99999 FORMAT (' BINOM(', I1, ',', I1, ') = ', F6.2)
END

```

\section*{Output}
```

BINOM(9,5)=126.00

```

\section*{GAMMA}

This function evaluates the complete gamma function.

\section*{Function Return Value}

GAMMA - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the complete gamma function is desired. (Input)

\section*{FORTRAN 90 Interface}

\author{
Generic: GAMMA (x) \\ Specific: The specific interface names are S_GAMMA, D_GAMMA, and C_GAMMA.
}

\section*{FORTRAN 77 Interface}

Single: GAMMA (x)
Double: \(\quad\) The double precision function name is DGAMMA.
Complex: The complex name is CGAMMA.

\section*{Description}

The gamma function, \(\Gamma(z)\), is defined to be
\[
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \text { for } \mathfrak{R}_{z>0}
\]

For \(\Re(z)<0\), the above definition is extended by analytic continuation.
\(z\) must not be so close to a negative integer that the result is less accurate than half precision. If \(\mathfrak{R}(z)\) is too small, then the result will underflow. Users who need such values should use the log gamma function ALNGAM. When \(\mathfrak{J}(z) \approx 0, \mathfrak{R}(z)\) should be greater than \(x_{\text {min }}\) so that the result does not underflow, and \(\mathfrak{R}(z)\) should be less than \(x_{\max }\) so that the result does not overflow. \(x_{\text {min }}\) and \(x_{\max }\) are available by
```

CALL R9GAML (XMIN, XMAX)

```

Note that \(z\) must not be too far from the real axis because the result will underflow.


Figure 4.1 — Plot of \(\Gamma(x)\) and \(I / \Gamma(x)\)

\section*{Comments}

Informational Errors
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 3 & The function underflows because x is too small. \\
3 & 2 & \begin{tabular}{l} 
Result is accurate to less than one-half precision because x is too near a nega- \\
tive integer.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\Gamma(5.0)\) is computed and printed.
```

USE GAMMA_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 5.0
VALUE = GAMMA(X)

```
```

! Print the results
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' GAMMA(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

GAMMA(5.000) = 24.000

```

\section*{Example 2}

In this example, \(\Gamma(1.4+3 i)\) is computed and printed.
```

 USE GAMMA_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
!
Z = (1.4, 3.0)
VALUE = GAMMA(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' GAMMA(', F6.3, ',', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

GAMMA(1.400, 3.000)=(-0.001, 0.061)

```

\section*{GAMR}

This function evaluates the reciprocal gamma function.

\section*{Function Return Value}

GAMR - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the reciprocal gamma function is desired. (Input)

\section*{FORTRAN 90 Interface}

\author{
Generic: GAMR (x) \\ Specific: The specific interface names are S_GAMR, D_GAMR, and C_GAMR
}

\section*{FORTRAN 77 Interface}
Single: GAMR (x)

Double: The double precision function name is DGAMR.
Complex: The complex name is CGAMR.

\section*{Description}

The function GAMR computes \(1 / \Gamma(z)\). See GAMMA for the definition of \(\Gamma(z)\).
For \(\mathfrak{J}(z) \approx 0, z\) must be larger than \(x_{\min }\) so that \(1 / \Gamma(z)\) does not underflow, and \(x\) must be smaller than \(x_{\max }\) so that \(1 / \Gamma(z)\) does not overflow. Symmetric overflow and underflow limits \(x_{\min }\) and \(x_{\max }\) are obtainable from

CALL R9GAML (XMIN, XMAX)
Note that \(z\) must not be too far from the real axis because the result will overflow there.

\section*{Comments}

This function is well behaved near zero and negative integers.

\section*{Examples}

\section*{Example 1}

In this example, \(1 / \Gamma(1.85)\) is computed and printed.
```

USE GAMR_INT
USE UMACH_INT

```


\section*{Output}
\(\operatorname{GAMR}(1.850)=1.058\)

\section*{Example 2}

In this example, \(\ln \Gamma(1.4+3 i)\) is computed and printed.
```

 USE GAMR_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 ! Compute
Z = (1.4, 3.0)
VALUE = GAMR(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' GAMR(', F6.3, ',', F6.3, ') = (', F7.3, ',', F7.3, ')')
END

```

\section*{Output}
```

GAMR(1.400, 3.000)=(-0.303,-16.367)

```

\section*{ALNGAM}

The function evaluates the logarithm of the absolute value of the gamma function.

\section*{Function Return Value}

ALNGAM - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ALNGAM (x)
Specific: The specific interface names are S_ALNGAM, D_ALNGAM, and C_ALNGAM.

\section*{FORTRAN 77 Interface}

Single: ALNGAM (x)
Double: The double precision function name is DLNGAM.
Complex: The complex name is CLNGAM.

\section*{Description}

The function ALNGAM computes \(\ln |\Gamma(x)|\). See GAMMA for the definition of \(\Gamma(x)\).
The gamma function is not defined for integers less than or equal to zero. Also, \(|x|\) must not be so large that the result overflows. Neither should \(x\) be so close to a negative integer that the accuracy is worse than half precision.


Figure 4.2 — Plot of \(\log |\Gamma(x)|\)

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ALNGAM}(\mathrm{x})\) is accurate to less than one-half precision because x is \\
too near a negative integer.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\ln |\Gamma(1.85)|\) is computed and printed.
```

 USE ALNGAM_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
X = 1.85
VALUE = ALNGAM(X)

```
```

! Print the results
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ALNGAM(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ALNGAM(1.850)=-0.056

```

\section*{Example 2}

In this example, \(\ln \Gamma(1.4+3 i)\) is computed and printed.
```

 USE ALNGAM_INT
 USE UMACH_INT
 IMPLICIT NONE
 COMPLEX VALUE, Z
 !
Z = (1.4, 3.0)
VALUE = ALNGAM(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ALNGAM(', F6.3, ',', F6.3, ') = (',\&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ALNGAM(1.400, 3.000)=(-2.795, 1.589)

```

\section*{ALGAMS}

Returns the logarithm of the absolute value of the gamma function and the sign of gamma.

\section*{Required Arguments}
\(X\) - Argument for which the logarithm of the absolute value of the gamma function is desired. (Input)
ALGM - Result of the calculation. (Output)
\(S\) - Sign of gamma(X). (Output)
If gamma(X) is greater than or equal to zero, \(S=1.0\). If gamma(X) is less than zero, \(S=-1.0\).

\section*{FORTRAN 90 Interface}

Generic: CALL ALGAMS (X, ALGM, S)
Specific: The specific interface names are S_ALGAMS and D_ALGAMS.

\section*{FORTRAN 77 Interface}

Single: CALL ALGAMS (X, ALGM, S)
Double: \(\quad\) The double precision function name is DLGAMS.

\section*{Description}

The function ALGAMS computes \(\ln |\Gamma(x)|\) and the sign of \(\Gamma(x)\). See GAMMA for the definition of \(\Gamma(x)\).
The result overflows if \(|x|\) is too large. The accuracy is worse than half precision if \(x\) is too close to a negative integer.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of ALGAMS is accurate to less than one-half precision because x is too \\
near a negative integer.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\ln |\Gamma(1.85)|\) and the sign of \(\Gamma(1.85)\) are computed and printed.
```

USE ALGAMS_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, S, X

```
```

!
Compute
X = 1.85
CALL ALGAMS(X, VALUE, S)
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) X, VALUE
99998 FORMAT (' Log Abs(Gamma(', F6.3, ')) = ', F6.3)
WRITE (NOUT,99999) X, S
99999 FORMAT (' Sign(Gamma(', F6.3, ')) = ', F6.2)
END

```

\section*{Output}
```

Log Abs(Gamma(1.850)) = -0.056
Sign(Gamma(1.850))=1.00

```

\section*{GAMI}

This function evaluates the incomplete gamma function.

\section*{Function Return Value}

GAMI - Function value. (Output)

\section*{Required Arguments}

A- The integrand exponent parameter. (Input)
It must be positive.
\(X\) - The upper limit of the integral definition of GAMI. (Input)
It must be nonnegative.

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & GAMI (A, X) \\
Specific: & The specific interface names are S_GAMI and D_GAMI.
\end{tabular}

\section*{FORTRAN 77 Interface}

Single: GAMI (A, x)
Double: The double precision function name is DGAMI.

\section*{Description}

The incomplete gamma function is defined to be
\[
\gamma(a, x)=\int_{0}^{x} t^{a-1} e^{-t} d t \text { for } a>0 \text { and } x \geq 0
\]

The function \(\gamma(a, x)\) is defined only for \(a\) greater than zero. Although \(\gamma(a, x)\) is well defined for \(x>-\infty\), this algorithm does not calculate \(\gamma(a, x)\) for negative \(x\). For large \(a\) and sufficiently large \(x, \gamma(a, x)\) may overflow. \(\gamma(a, x)\) is bounded by \(\Gamma(a)\), and users may find this bound a useful guide in determining legal values of \(a\).
Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy will occur when GAMI is very large or very small.


Figure 4.3 - Contour Plot of \(\gamma(a, x)\)

\section*{Example}

In this example, \(\gamma(2.5,0.9)\) is computed and printed.
```

 USE GAMI_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL A, VALUE, X
 !
A = 2.5
X = 0.9
VALUE = GAMI (A, X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' GAMI(', F6.3, ',', F6.3, ') = ', F6.4)
END

```

\section*{Output}
```

GAMI (2.500, 0.900)=0.1647

```

\section*{GAMIC}

Evaluates the complementary incomplete gamma function.

\section*{Function Return Value}

GAMIC - Function value. (Output)

\section*{Required Arguments}
\(A\) - The integrand exponent parameter as per the remarks. (Input)
\(X\) - The upper limit of the integral definition of GAMIC. (Input)
If \(A\) is positive, then \(X\) must be positive. Otherwise, \(X\) must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: GAMIC (A, X)
Specific: The specific interface names are S_GAMIC and D_GAMIC.

\section*{FORTRAN 77 Interface}

Single:
GAMIC (A, X)
Double: The double precision function name is DGAMIC.

\section*{Description}

The incomplete gamma function is defined to be
\[
\Gamma(a, x)=\int_{\mathrm{x}}^{\infty} t^{\mathrm{a}-1} e^{-\mathrm{t}} d t
\]

The only general restrictions on \(a\) are that it must be positive if \(x\) is zero; otherwise, it must not be too close to a negative integer such that the accuracy of the result is less than half precision. Furthermore, \(\Gamma(a, x)\) must not be so small that it underflows, or so large that it overflows. Although \(\Gamma(a, x)\) is well defined for \(x>-\infty\) and \(a>0\), this algorithm does not calculate \(\Gamma(a, x)\) for negative \(x\).

The function GAMIC is based on a code by Gautschi (1979).

\section*{Comments}

Informational Error

Type Code
32

\section*{Description}

Result of GAMIC(A, X) is accurate to less than one-half precision because A is too near a negative integer.

\section*{Example}

In this example, \(\Gamma(2.5,0.9)\) is computed and printed.
```

 USE GAMIC_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL A, VALUE, X
 !
A = 2.5
X = 0.9
VALUE = GAMIC(A, X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' GAMIC(', F6.3, ',', F6.3, ') = ', F6.4)
END

```

\section*{Output}
```

GAMIC(2.500, 0.900)=1.1646

```

\section*{GAMIT}

This function evaluates the Tricomi form of the incomplete gamma function.

\section*{Function Return Value}

GAMIT - Function value. (Output)

\section*{Required Arguments}
\(A\) - The integrand exponent parameter as per the comments. (Input)
\(X\) - The upper limit of the integral definition of GAMIT. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: GAMIT (A, X)
Specific: The specific interface names are S_GAMIT and D_GAMIT.

\section*{FORTRAN 77 Interface}

Single:
GAMIT (A, X)
Double: The double precision function name is DGAMIT.

\section*{Description}

The Tricomi's incomplete gamma function is defined to be
\[
\gamma^{*}(a, x)=\frac{x^{-a} \gamma(a, x)}{\Gamma(a)}=\frac{x^{-a}}{\Gamma(a)} \int_{x}^{\infty} t^{a-1} e^{-t} d t
\]
where \(\gamma(a, x)\) is the incomplete gamma function. See GAMI for the definition of \(\gamma(a, x)\).
The only general restriction on \(a\) is that it must not be too close to a negative integer such that the accuracy of the result is less than half precision. Furthermore, \(\left|\gamma^{*}(a, x)\right|\) must not underflow or overflow. Although \(\gamma^{*}(a, x)\) is well defined for \(x>-\infty\), this algorithm does not calculate \(\gamma^{*}(a, x)\) for negative \(x\).

A slight deterioration of two or three digits of accuracy will occur when GAMIT is very large or very small in absolute value because logarithmic variables are used. Also, if the parameter \(a\) is very close to a negative integer (but not quite a negative integer), there is a loss of accuracy which is reported if the result is less than half machine precision.

The function GAMIT is based on a code by Gautschi (1979).

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{GAMIT}(\mathrm{A}, \mathrm{X})\) is accurate to less than one-half precision because A is \\
too close to a negative integer.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\gamma^{*}(3.2,2.1)\) is computed and printed.
```

 USE GAMIT_INT
    ```
    USE UMACH_INT

IMPLICIT NONE
```

! Declare variables

```
    INTEGER NOUT
    REAL A, VALUE, X
!
    \(\mathrm{A}=3.2\)
    \(\mathrm{X}=2.1\)
    VALUE = GAMIT(A, X)
! Print the results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' GAMIT(', F6.3, ',', F6.3, ') = ', F6.4)
    END

\section*{Output}
```

GAMIT(3.200, 2.100)=0.0284

```

\section*{PSI}

This function evaluates the derivative of the log gamma function.

\section*{Function Return Value}

PSI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
```

Generic: PSI (x)
Specific: The specific interface names are S_PSI, D_PSI, and C_PSI.

```

\section*{FORTRAN 77 Interface}
Single: PSI (x)

Double: \(\quad\) The double precision function name is DPSI.
Complex: The complex name is CPSI.

\section*{Description}

The psi function, also called the digamma function, is defined to be
\[
\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
\]

See GAMMA for the definition of \(\Gamma(x)\).
The argument \(x\) must not be exactly zero or a negative integer, or \(\Psi(x)\) is undefined. Also, \(x\) must not be too close to a negative integer such that the accuracy of the result is less than half precision.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{PSI}(\mathrm{x})\) is accurate to less than one-half precision because x is too \\
near a negative integer.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\Psi(1.915)\) is computed and printed.
```

 USE PSI_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
!
X = 1.915
VALUE = PSI(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' PSI(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

PSI(1.915)=0.366

```

\section*{Example 2}

In this example, \(\Psi(1.9+4.3 i)\) is computed and printed.
```

 USE PSI_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 ! Compute
Z = (1.9, 4.3)
VALUE = PSI(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' PSI(', F6.3, ',', F6.3, ') = (', F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

PSI(1.900, 4.300)=(1.507, 1.255)

```

\section*{PSI1}

This function evaluates the second derivative of the log gamma function.

\section*{Function Return Value}

PSI1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: PSI1 (x)
Specific: \(\quad\) The specific interface names are S_PSI1 and D_PSI1.

\section*{Description}

The psi1 function, also called the trigamma function, is defined to be
\[
\psi_{1}(x)=\frac{d^{2}}{d x^{2}} \ln \Gamma(x)
\]

See GAMMA for the definition of \(\Gamma(x)\).
The argument \(x\) must not be exactly zero or a negative integer, or \(\psi_{1}(x)\) is undefined. Also, \(x\) must not be too close to a negative integer such that the accuracy of the result is less than half precision.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{PSII}(\mathrm{x})\) is accurate to less than one-half precision because x is too \\
near a negative integer.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\psi_{1}(1.915)\) is computed and printed.
```

USE PSI1_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, X

```
```

!
Compute
X = 1.915
VALUE = PSI1(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' PSI1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

PSI1(1.915) = 0.681

```

\section*{POCH}

This function evaluates a generalization of Pochhammer's symbol.

\section*{Function Return Value}

POCH - Function value. (Output)
The generalized Pochhammer symbol is \(\Gamma(a+x) / \Gamma(a)\).

\section*{Required Arguments}
\(A\) - The first argument. (Input)
\(\boldsymbol{X}\) - The second, differential argument. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad \operatorname{POCH}(\mathrm{A}, \mathrm{x})\)
Specific: The specific interface names are S_POCH and D_POCH.

\section*{FORTRAN 77 Interface}

Single:
POCH (A, X)
Double: \(\quad\) The double precision function name is DPOCH.

\section*{Description}

Pochhammer's symbol is \((a)_{n}=(a)(a-1) \ldots(a-n+1)\) for \(n\) a nonnegative integer. Pochhammer's generalized symbol is defined to be
\[
(a)_{x}=\frac{\Gamma(a+x)}{\Gamma(a)}
\]

See GAMMA for the definition of \(\Gamma(x)\).
Note that a straightforward evaluation of Pochhammer's generalized symbol with either gamma or log gamma functions can be especially unreliable when \(a\) is large or \(x\) is small.

Substantial loss can occur if \(a+x\) or \(a\) are close to a negative integer unless \(|x|\) is sufficiently small. To insure that the result does not overflow or underflow, one can keep the arguments \(a\) and \(a+x\) well within the range dictated by the gamma function routine GAMMA or one can keep \(|x|\) small whenever \(a\) is large. POCH also works for a variety of arguments outside these rough limits, but any more general limits that are also useful are difficult to specify.

\section*{Comments}

Informational Errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{POCH}(\mathrm{A}, \mathrm{X})\) is accurate to less than one-half precision because the \\
absolute value of the X is too large. Therefore, \(\mathrm{A}+\mathrm{X}\) cannot be evaluated \\
accurately.
\end{tabular} \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{POCH}(\mathrm{A}, \mathrm{X})\) is accurate to less than one-half precision because either \\
A or \(\mathrm{A}+\mathrm{X}\) is too close to a negative integer.
\end{tabular}
\end{tabular}

For X a nonnegative integer, \(\operatorname{POCH}(\mathrm{A}, \mathrm{X})\) is just Pochhammer's symbol.

\section*{Example}

In this example, (1.6) \()_{0.8}\) is computed and printed.
```

 USE POCH_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL A, VALUE, X
!
A}=1.
X = 0.8
VALUE = POCH(A, X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' POCH(', F6.3, ',', F6.3, ') = ', F6.4)
END

```

\section*{Output}
```

POCH(1.600, 0.800)=1.3902

```

\section*{POCH1}

This function evaluates a generalization of Pochhammer's symbol starting from the first order.

\section*{Function Return Value}

POCH1 - Function value. (Output)
\(\operatorname{POCH1}(\mathrm{A}, \mathrm{X})=(\operatorname{POCH}(\mathrm{A}, \mathrm{X})-1) / \mathrm{X}\).

\section*{Required Arguments}
\(A\) - The first argument. (Input)
\(X\) - The second, differential argument. (Input)

\section*{FORTRAN 90 Interface}

Generic: Poch1 (A, x)
Specific: The specific interface names are S_POCH1 and D_POCH1.

\section*{FORTRAN 77 Interface}

Single:
POCH1 (A, X)
Double: \(\quad\) The double precision function name is DРосн1.

\section*{Description}

Pochhammer's symbol from the first order is defined to be
\[
\operatorname{POCH1}(a, x)=\frac{(a)_{x}-1}{x}=\left(\frac{\Gamma(a+x)}{\Gamma(a)}-1\right) / x
\]
where \((a)_{x}\) is Pochhammer's generalized symbol. See POCH for the definition of \((a)_{x}\). It is useful in special situations that require especially accurate values when \(x\) is small. This specification is particularly suited for stability when computing expressions such as
\[
\left[\frac{\Gamma(a+x)}{\Gamma(a)}-\frac{\Gamma(b+x)}{\Gamma(b)}\right] / x=\operatorname{POCH} 1(a, x)-\operatorname{POCH1}(b, x)
\]

Note that \(\operatorname{POCH} 1(a, 0)=\Psi(a)\). See PSI for the definition of \(\Psi(a)\).
When \(|x|\) is so small that substantial cancellation will occur if the straightforward formula is used, we use an expansion due to fields and discussed by Luke (1969).

The ratio \((a)_{x}=\Gamma(a+x) / \Gamma(a)\) is written by Luke as \((a+(x-1) / 2)^{x}\) times a polynomial in \((a+(x-1) / 2)^{-2}\). To maintain significance in POCH1, we write for positive \(a\),
\[
(a+(x-1) / 2)^{x}=\exp (x \ln (a+(x-1) / 2))=e^{q}=1+q \operatorname{EXPRL}(q)
\]
where \(\operatorname{EXPRL}(\mathrm{x})=\left(e^{x}-1\right) / x\). Likewise, the polynomial is written \(P=1+x P_{1}(a, x)\). Thus,
\[
\operatorname{POCH1}(a, x)=\left((a)_{x}-1\right) / x=\operatorname{EXPRL}(q)\left(q / x+q P_{1}(a, x)\right)+P_{1}(a, x)
\]

Substantial significance loss can occur if \(a+x\) or \(a\) are close to a negative integer even when \(|x|\) is very small. To insure that the result does not overflow or underflow, one can keep the arguments \(a\) and \(a+x\) well within the range dictated by the gamma function routine GAMMA or one can keep \(|x|\) small whenever \(a\) is large. POCH also works for a variety of arguments outside these rough limits, but any more general limits that are also useful are difficult to specify.

\section*{Example}

In this example, \(\operatorname{POCH}(1.6,0.8)\) is computed and printed.
```

 USE POCH1_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL A, VALUE, X
A = 1.6
X = 0.8
VALUE = POCH1 (A, X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' POCH1(', F6.3, ',',F6.3, ') = ', F6.4)
END

```

\section*{Output}
```

POCH1(1.600, 0.800) = 0.4878

```

\section*{BETA}

This function evaluates the complete beta function.

\section*{Function Return Value}

BETA - Function value. (Output)

\section*{Required Arguments}
\(A\) - First beta parameter. (Input)
For real arguments, A must be positive.
\(B\) - Second beta parameter. (Input)
For real arguments, B must be positive.

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BETA (A, B) \\
Specific: & The specific interface names are S_BETA, D_BETA, and C_BETA.
\end{tabular}

\section*{FORTRAN 77 Interface}

Single:
Double:
Complex:

BETA (A, B)
The double precision function name is DBETA.
The complex name is CBETA.

\section*{Description}

The beta function is defined to be
\[
\beta(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t
\]

See GAMMA for the definition of \(\Gamma(x)\).
For real arguments the function BETA requires that both arguments be positive. In addition, the arguments must not be so large that the result underflows.

For complex arguments, the arguments \(a\) and \(a+b\) must not be close to negative integers. The arguments should not be so large (near the real axis) that the result underflows. Also, \(a+b\) should not be so far from the real axis that the result overflows.

\section*{Comments}

Informational Error

\section*{Type Code Description}

2

\section*{1}

The function underflows because A and/or B is too large.

\section*{Examples}

\section*{Example 1}

In this example, \(\beta(2.2,3.7)\) is computed and printed.
```

 USE BETA_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL A, VALUE, X
 A = 2.2
 X = 3.7
 VALUE = BETA(A, X)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
 99999 FORMAT (' BETA(', F6.3, ',', F6.3, ') = ', F6.4)
END

```

\section*{Output}

BETA ( \(2.200,3.700)=0.0454\)

\section*{Example 2}

In this example, \(\beta(1.7+2.2 i, 3.7+0.4 i)\) is computed and printed.
```

USE BETA_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
COMPLEX A, B, VALUE
A = (1.7, 2.2)
B = (3.7, 0.4)
VALUE = BETA(A, B)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, B, VALUE

```
```

99999 FORMAT (' BETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3,\&
')) = (', F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

BETA((1.700, 2.200),(3.700, 0.400)) = (-0.033,-0.017)

```

\section*{ALBETA}

This function evaluates the natural logarithm of the complete beta function for positive arguments.

\section*{Function Return Value}

ALBETA - Function value. (Output)
ALBETA returns \(\ln \beta(A, B)=\ln (\Gamma(A) \Gamma(B) / \Gamma(A+B))\).

\section*{Required Arguments}

A - The first argument of the BETA function. (Input) For real arguments, A must be greater than zero.
\(B\) - The second argument of the BETA function. (Input)
For real arguments, \(B\) must be greater than zero.

\section*{FORTRAN 90 Interface}

Generic: ALBETA (A, B)
Specific: The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA.

\section*{FORTRAN 77 Interface}

Single:
Double:
Complex: The complex name is CLBETA.

\section*{Description}

ALBETA computes \(\ln \beta(a, b)=\ln \beta(b, a)\). See BETA for the definition of \(\beta(a, b)\).
For real arguments, the function ALBETA is defined for \(a>0\) and \(b>0\). It returns accurate results even when \(a\) or \(b\) is very small. It can overflow for very large arguments; this error condition is not detected except by the computer hardware.

For complex arguments, the arguments \(a, b\) and \(a+b\) must not be close to negative integers (even though some combinations ought to be allowed). The arguments should not be so large that the logarithm of the gamma function overflows (presumably an improbable condition).

\section*{Comments}

Note that \(\ln \beta(A, B)=\ln \beta(B, A)\).

\section*{Examples}

\section*{Example 1}

In this example, \(\ln \beta(2.2,3.7)\) is computed and printed.
```

 USE ALBETA_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL A, VALUE, X
A = 2.2
X = 3.7
VALUE = ALBETA (A, X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' ALBETA(', F6.3, ',', F6.3,') = ', F8.4)
END

```

\section*{Output}
```

ALBETA(2.200, 3.700)=-3.0928

```

\section*{Example 2}

In this example, \(\ln \beta(1.7+2.2 i, 3.7+0.4 i)\) is computed and printed.
```

 USE ALBETA_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX A, B, VALUE
 A = (1.7, 2.2)
 B = (3.7, 0.4)
 VALUE = ALBETA(A, B)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, B, VALUE
 99999 FORMAT (' ALBETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3, \&
')) = (', F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

ALBETA((1.700, 2.200),(3.700, 0.400))=(-3.280,-2.659)

```

\section*{BETAI}

This function evaluates the incomplete beta function ratio.

\section*{Function Return Value}

BETAI — Probability that a random variable from a beta distribution having parameters PIN and QIN will be less than or equal to X . (Output)

\section*{Required Arguments}
\(X\) - Upper limit of integration. (Input) X must be in the interval \((0.0,1.0)\) inclusive.
PIN - First beta distribution parameter. (Input)
PIN must be positive.
QIN - Second beta distribution parameter. (Input)
QIN must be positive.

\section*{FORTRAN 90 Interface}

Generic: BETAI (X, PIN, QIN)
Specific: The specific interface names are S_BETAI and D_BETAI.

\section*{FORTRAN 77 Interface}

Single: BETAI (X, PIN, QIN)
Double: The double precision function name is DBETAI.

\section*{Description}

The incomplete beta function is defined to be
\[
\begin{aligned}
& I_{x}(p, q)=\frac{\beta_{x}(p, q)}{\beta(p, q)}=\frac{1}{\beta(p, q)} \int_{0}^{x} t p^{p-1}(1-t)^{q-1} d t \\
& \text { for } 0 \leq x \leq 1, p>0, q>0
\end{aligned}
\]

See BETA for the definition of \(\beta(p, q)\).
The parameters \(p\) and \(q\) must both be greater than zero. The argument \(x\) must lie in the range 0 to 1 . The incomplete beta function can underflow for sufficiently small \(x\) and large \(p\); however, this underflow is not reported as an error. Instead, the value zero is returned as the function value.

The function BETAI is based on the work of Bosten and Battiste (1974).

\section*{Example}

In this example, \(I_{0.61}(2.2,3.7)\) is computed and printed.
```

 USE BETAI_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL PIN, QIN, VALUE, X
X=0.61
PIN = 2.2
QIN = 3.7
VALUE = BETAI(X, PIN, QIN)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, PIN, QIN, VALUE
99999 FORMAT (' BETAI(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.4)
END

```

\section*{Output}
```

BETAI(0.610, 2.200, 3.700) = 0.8822

```

\section*{Chapter 5: Error Function and Related Functions}

\section*{Routines}
5.1 Error Functions
Evaluates the error function, erf \(x\) ..... 119
Evaluates the complementary error function, erfc \(x\) ..... 121 ..... ERFC
Evaluates the scaled complementary error function, \(\exp \left(x^{2}\right) \operatorname{erfc}(x)\) ..... 124
Evaluates a scaled function related to erfc, \(\exp \left(-z^{2}\right) \operatorname{erfc}(-i z)\) CERFE ..... 126
Evaluates the inverse error function, \(\operatorname{erf}^{-1} x\) ..... ERFI ..... 128
Evaluates the inverse complementary error function, \(\operatorname{erfc}^{-1} x\) ..... ERFCI ..... 131
Evaluates Dawson's function DAWS ..... 134
5.2 Fresnel Integrals
Evaluates the cosine Fresnel integral, \(C(x)\) ..... FRESC ..... 136
Evaluates the sine Fresnel integral, \(S(x)\) FRESS ..... 138

\section*{Usage Notes}

The error function is
\[
e(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

The complementary error function is \(\operatorname{erfc}(x)=1-\operatorname{erf}(x)\). Dawson's function is
\[
e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
\]

The Fresnel integrals are
\[
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
\]
and
\[
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
\]

They are related to the error function by
\[
C(z)+i S(z)=\frac{1+i}{2} \operatorname{erf}\left(\frac{\sqrt{\pi}}{2}(1-i) z\right)
\]

\section*{ERF}

This function evaluates the error function.

\section*{Function Return Value}

ERF - Function value. (Output)

\section*{Required Arguments}
\(X-\) Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: ERF (x)
Specific: The specific interface names are S_ERF and D_ERF.

\section*{FORTRAN 77 Interface}

Single: ERF (x)
Double: The double precision function name is DERF.

\section*{Description}

The error function, \(\operatorname{erf}(x)\), is defined to be
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

All values of \(x\) are legal.


Figure 5.I — Plot of erf ( \(x\) )

\section*{Example}

In this example, erf(1.0) is computed and printed.
```

 USE ERF_INT
 USE UMACH_INT
 IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
!
X = 1.0
VALUE = ERF(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ERF(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ERF(1.000)=0.843

```

\section*{ERFC}

This function evaluates the complementary error function.

\section*{Function Return Value}

ERFC - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & ERFC \((X)\) \\
Specific: & The specific interface names are S_ERFC and D_ERFC.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & ERFC (X) \\
Double: & The double precision function name is DERFC.
\end{tabular}

\section*{Description}

The complementary error function, \(\operatorname{erfc}(x)\), is defined to be
\[
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
\]

The argument \(x\) must not be so large that the result underflows. Approximately, \(x\) should be less than
\[
[-\ln (\sqrt{\pi} S)]^{1 / 2}
\]
where \(s=\operatorname{AMACH}(1)\) (see the Reference Material section of this manual) is the smallest representable positive floating-point number.


Figure 5.2 - Plot of erfc (x)

\section*{Comments}

Informational Error
Type Code Description
21 The function underflows because x is too large.

\section*{Example}

In this example, \(\operatorname{erfc}(1.0)\) is computed and printed.
```

USE ERFC_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 1.0
VALUE = ERFC(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ERFC(', F6.3, ') = ', F6.3)
END

```
\(!\)

\section*{Output}
```

$\operatorname{ERFC}(1.000)=0.157$

```

\section*{ERFCE}

This function evaluates the exponentially scaled complementary error function.

\section*{Function Return Value}

ERFCE - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & ERFCE (X) \\
Specific: & The specific interface names are S_ERFCE and D_ERFCE.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & ERFCE \((\mathrm{X})\) \\
Double: & The double precision function name is DERFCE.
\end{tabular}

\section*{Description}

The function ERFCE(X) computes
\[
e^{x^{2}} \operatorname{erfc}(x)
\]
where \(\operatorname{erfc}(x)\) is the complementary error function. See ERFC for its definition.
To prevent the answer from underflowing, \(x\) must be greater than
\[
x_{\min } \simeq-\sqrt{\ln (b / 2)}
\]
where \(b=\operatorname{AMACH}(2)\) is the largest representable floating-point number.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because x is too large.
\end{tabular}

\section*{Example}

In this example, \(\operatorname{ERFCE}(1.0)=e^{1.0} \operatorname{erfc}(1.0)\) is computed and printed.
```

 USE ERFCE_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 1.0
VALUE = ERFCE(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ERFCE(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ERFCE(1.000)=0.428

```

\section*{CERFE}

This function evaluates a scaled function related to ERFC.

\section*{Function Return Value}

CERFE - Complex function value. (Output)

\section*{Required Arguments}
\(\mathbf{Z}\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: CERFE (Z)
Specific: The specific interface names are C_CERFE and Z_CERFE.

\section*{FORTRAN 77 Interface}

Complex: CERFE (Z)
Double complex:The double complex function name is ZERFE.

\section*{Description}

Function CERFE is defined to be
\[
e^{-z^{2}} \operatorname{erfc}(-i z)=-i e^{-z^{2}} \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{t^{2}} d t
\]

Let \(b=\operatorname{AMACH}(2)\) be the largest floating-point number. The argument \(z\) must satisfy
\[
|z| \leq \sqrt{b}
\]
or else the value returned is zero. If the argument \(z\) does not satisfy \((\mathfrak{J} z)^{2}-(\mathfrak{R} z)^{2} \leq \log b\), then \(b\) is returned. All other arguments are legal (Gautschi 1969, 1970).

\section*{Example}

In this example, \(\operatorname{CERFE}(2.5+2.5 i)\) is computed and printed.
```

USE CERFE_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
COMPLEX VALUE, Z

```
```

! Compute
Z = (2.5, 2.5)
VALUE = CERFE(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CERFE(', F6.3, ',', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{CERFE}(2.500,2.500)=(0.117,0.108)\)

\section*{ERFI}

This function evaluates the inverse error function.

\section*{Function Return Value}

ERFI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & ERFI (X) \\
Specific: & The specific interface names are S_ERFI and D_ERFI.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: \(\quad \operatorname{ERFI}(\mathrm{x})\)

Double: The double precision function name is DERFI.

\section*{Description}

Function \(\operatorname{ERFI}(\mathrm{X})\) computes the inverse of the error function erf \(x\), defined in ERF.
The function \(\operatorname{ERFI}(\mathrm{X})\) is defined for \(|x|<1\). If \(x_{\max }<|x|<1\), then the answer will be less accurate than half precision. Very approximately,
\[
x_{\max } \approx 1-\sqrt{\varepsilon /(4 \pi)}
\]
where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.


Figure 5.3 — Plot of \(\operatorname{erf}^{-1}(x)\)

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ERFI}(x)\) is accurate to less than one-half precision because the abso- \\
lute value of the argument is too large.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\operatorname{erf}^{-1}(\operatorname{erf}(1.0))\) is computed and printed.
```

USE ERFI_INT
USE ERF_INT
USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER NOUT
REAL VALUE, X
X = ERF(1.0)
VALUE = ERFI(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
```

99999 FORMAT (' ERFI(', F6.3, ') = ', F6.3)

```
    END

\section*{Output}
\(\operatorname{ERFI}(0.843)=1.000\)

\section*{ERFCI}

This function evaluates the inverse complementary error function.

\section*{Function Return Value}

ERFCI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

\author{
Generic: ERFCI (x) \\ Specific: The specific interface names are S_ERFCI and D_ERFCI.
}

\section*{FORTRAN 77 Interface}
```

Single: ERFCI (x)
Double: The double precision function name is DERFCI.

```

\section*{Description}

The function \(\operatorname{ERFCI}(X)\) computes the inverse of the complementary error function erfc \(x\), defined in ERFC.
The function \(\operatorname{ERFCI}(\mathrm{X})\) is defined for \(0<x<2\). If \(x_{\max }<x<2\), then the answer will be less accurate than half precision. Very approximately,
\[
x_{\max } \approx 2-\sqrt{\varepsilon /(4 \pi)}
\]

Where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.


Figure 5.4 — Plot of \(\operatorname{erf}^{-1}(x)\)

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & \begin{tabular}{l} 
Result of \(\operatorname{ERFCI}(\mathrm{x})\) is accurate to less than one-half precision because the \\
argument is too close to 2.0.
\end{tabular}
\end{tabular}

\section*{Example}

In this example, \(\operatorname{erfc}^{-1}(\operatorname{erfc}(1.0))\) is computed and printed.
```

USE ERFCI_INT
USE ERFC_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = ERFC(1.0)
VALUE = ERFCI(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
```

99999 FORMAT (' ERFCI(', F6.3, ') = ', F6.3)
END

```

Output
```

ERFCI(0.157)=1.000

```

\section*{DAWS}

This function evaluates Dawson's function.

\section*{Function Return Value}

DAWS - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & DAWS (x) \\
Specific: & The specific interface names are S_DAWS and D_DAWS.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: \(\quad\) DAWS (x)

Double: \(\quad\) The double precision function name is DDAWS.

\section*{Description}

Dawson's function is defined to be
\[
e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
\]

It is closely related to the error function for imaginary arguments.
So that Dawson's function does not underflow, \(|x|\) must be less than \(1 /(2 s)\). Here, \(s=\operatorname{AMACH}(1)\) is the smallest representable positive floating-point number.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & The function underflows because the absolute value of x is too large.
\end{tabular}

The Dawson function is closely related to the error function for imaginary arguments.

\section*{Example}

In this example, \(\operatorname{DAWS}(1.0)\) is computed and printed.


\section*{Output}
```

DAWS(1.000)=0.538

```

\section*{FRESC}

This function evaluates the cosine Fresnel integral.

\section*{Function Return Value}

FRESC - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: FRESC (x)
Specific: The specific interface names are S_FRESC and D_FRESC.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & FRESC (x) \\
Double: & The double precision function name is DFRESC.
\end{tabular}

\section*{Description}

The cosine Fresnel integral is defined to be
\[
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
\]

All values of \(x\) are legal.

\section*{Example}

In this example, \(C(1.75)\) is computed and printed.
```

 USE FRESC_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
X = 1.75
VALUE = FRESC(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
\(!\)
```

99999 FORMAT (' FRESC(', F6.3, ') = ', F6.3)
END

```

Output
\(\operatorname{FRESC}(1.750)=0.322\)

\section*{FRESS}

This function evaluates the sine Fresnel integral.

\section*{Function Return Value}

FRESS - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & FRESS \((X)\) \\
Specific: & The specific interface names are S_FRESS and D_FRESS.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & FRESS \((\mathrm{X})\) \\
Double: & The double precision function name is DFRESS.
\end{tabular}

\section*{Description}

The sine Fresnel integral is defined to be
\[
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
\]

All values of \(x\) are legal.

\section*{Example}

In this example, \(S(1.75)\) is computed and printed.
```

USE FRESS_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 1.75
VALUE = FRESS(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
```

99999 FORMAT (' FRESS(', F6.3, ') = ', F6.3)
END

```

Output

FRESS \((1.750)=0.499\)

\section*{Chapter 6: Bessel Functions}

\section*{Routines}
6.1 Bessel Functions of Order 0 and 1
Evaluates \(J_{0}(x)\). ..... BSJ0 ..... 144
Evaluates \(J_{1}(x)\) ..... BSJ1 ..... 146
Evaluates \(Y_{0}(x)\) ..... BSYO ..... 148
Evaluates \(Y_{1}(x)\) ..... BSY1 ..... 150
Evaluates \(I_{0}(x)\) ..... BSIO ..... 152
Evaluates \(I_{1}(x)\) ..... BSI1 ..... 154
Evaluates \(K_{0}(x)\) ..... BSK0 ..... 156
Evaluates \(K_{1}(x)\) ..... BSK1 ..... 159
Evaluates \(e^{-|x|} l_{0}(x)\) ..... BSIOE ..... 161
Evaluates \(\mathrm{e}^{-|x|} I_{1}(x)\) ..... BSI1E ..... 163
Evaluates \(e^{x} K_{0}(x)\) ..... BSKOE ..... 165
Evaluates \(e^{x} K_{1}(x)\) BSK1E ..... 167
6.2 Series of Bessel Functions, Integer Order
Evaluates \(J_{k}(x), k=0, \ldots, n-1\) BSJNS169
Evaluates \(I_{k}(x), k=0, \ldots, n-1\) BSINS ..... 172
6.3 Series of Bessel Functions, Real Order and Argument
Evaluates \(J_{v+k}(x), k=0, \ldots, n-1\) ..... BSJS ..... 175
Evaluates \(Y_{v+k}(x), k=0, \ldots, n-1\) ..... BSYS ..... 177
Evaluates \(I_{v+k}(x), k=0, \ldots, n-1\) ..... 179
Evaluates \(e^{-x} I_{v+k}(x), k=0, \ldots, n-1\) BSIES ..... 181
Evaluates \(K_{v+k}(x), k=0, \ldots, n-1\) ..... BSKS ..... 183
Evaluates \(\mathrm{e}^{x} K_{v+k}(x), k=0, \ldots, n-1\) BSKES ..... 185
6.4 Series of Bessel Functions, Real Order and Complex Argument
 ..... 187
Evaluates \(Y_{v+k}(z), k=0, \ldots, n-1\) CBYS ..... 190



\section*{Usage Notes}

The following table lists the Bessel function routines by argument and order type:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Real Argument} & \multicolumn{2}{|l|}{Complex Argument} \\
\hline & \multicolumn{4}{|c|}{Order} & \multicolumn{2}{|r|}{Order} \\
\hline Function & 0 & 1 & Integer & Real & Integer & Real \\
\hline \(J_{\mathcal{L}}(x)\) & BSJ0 & BSJ1 & BSJNS & BSUS & BSJNS & CBJS \\
\hline \(Y \downarrow(x)\) & BSY0 & BSY1 & & BSYS & & CBYS \\
\hline \(I \sqrt{ }(x)\) & BSI0 & BSI1 & BSINS & BSIS & BSINS & CBIS \\
\hline \(e^{-|x|} I^{\prime}(x)\) & BSIOE & BSI1E & & BSIES & & \\
\hline \(K_{\nu}(x)\) & BSK0 & BSK1 & & BSKS & & CBKS \\
\hline \(e^{-|x|} K_{\mathcal{U}}(x)\) & BSK0E & BSK1E & & BSKES & & \\
\hline
\end{tabular}

\section*{BSJO}

This function evaluates the Bessel function of the first kind of order zero.

\section*{Function Return Value}

BSJO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSJ0 (x) \\
Specific: & The specific interface names are S_BSJ0 and D_BSJ0.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSJ0 (x) \\
Double: & The double precision function name is DBSJ0.
\end{tabular}

\section*{Description}

The Bessel function \(J_{0}(x)\) is defined to be
\[
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) d \theta
\]

To prevent the answer from being less accurate than half precision, \(|x|\) should be smaller than
\[
1 / \sqrt{\varepsilon}
\]

For the result to have any precision at all, \(|x|\) must be less than \(1 / \varepsilon\). Here, \(\varepsilon\) is the machine precision, \(\varepsilon=\operatorname{AMACH}(4)\).


Figure 6.I — Plot of \(\mathrm{J}_{0}(x)\) and \(\mathrm{J}_{1}(x)\)

\section*{Example}

In this example, \(J_{0}(3.0)\) is computed and printed.
```

 USE BSJO_INT
 USE UMACH_INT
 IMPLICIT NONE
 REAL VALUE, X
!
X = 3.0
VALUE = BSJ0(X)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSJ0(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSJ0(3.000)=-0.260

```

\section*{BSJ1}

This function evaluates the Bessel function of the first kind of order one.

\section*{Function Return Value}

BSJ1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: BSJ1 (x)
Specific: The specific interface names are S_BSJ1 and D_BSJ1.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSJ1 (X) \\
Double: & The double precision function name is DBSJ1.
\end{tabular}

\section*{Description}

The Bessel function \(J_{1}(x)\) is defined to be
\[
J_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-\theta) d \theta
\]

The argument \(x\) must be zero or larger in absolute value than 2 s to prevent \(J_{1}(x)\) from underflowing. Also, \(|x|\) should be smaller than
\[
1 / \sqrt{\varepsilon}
\]
to prevent the answer from being less accurate than half precision. \(|x|\) must be less than \(1 / \varepsilon\) for the result to have any precision at all. Here, \(\varepsilon\) is the machine precision, \(\varepsilon=\operatorname{AMACH}(4)\), and \(s=\operatorname{AMACH}(1)\) is the smallest representable positive floating-point number.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because the absolute value of x is too small.
\end{tabular}

\section*{Example}

In this example, \(J_{1}(2.5)\) is computed and printed.
```

 USE BSJ1_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
!
= 2.5
VALUE = BSJ1 (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSJ1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSJ1(2.500)=0.497

```

\section*{BSYO}

This function evaluates the Bessel function of the second kind of order zero.

\section*{Function Return Value}

BSY0 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSY0 \((\mathrm{x})\) \\
Specific: & The specific interface names are S_BSY0 and D_BSY0.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSY0 \((\mathrm{X})\) \\
Double: & The double precision function name is DBSY0.
\end{tabular}

\section*{Description}

The Bessel function \(Y_{0}(x)\) is defined to be
\[
Y_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \theta) d \theta-\frac{2}{\pi} \int_{0}^{\infty} e^{-x \sinh t} d t
\]

To prevent the answer from being less accurate than half precision, \(x\) should be smaller than
\[
1 / \sqrt{\varepsilon}
\]

For the result to have any precision at all, \(|x|\) must be less than \(1 / \varepsilon\). Here, \(\varepsilon\) is the machine precision, \(\varepsilon=\mathrm{AMACH}(4)\).


Figure 6.2 - Plot of \(Y_{0}(x)\) and \(Y_{1}(x)\)

\section*{Example}

In this example, \(Y_{0}(3.0)\) is computed and printed.
```

USE BSYO_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
! Compute
X = 3.0
VALUE = BSYO(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSY0(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSYO(3.000)=0.377

```

\section*{BSY1}

This function evaluates the Bessel function of the second kind of order one.

\section*{Function Return Value}

BSY1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSY1 (X) \\
Specific: & The specific interface names are S_BSY1 and D_BSY1.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: BSY1 (x)

Double: The double precision function name is DBSY1.

\section*{Description}

The Bessel function \(Y_{1}(x)\) is defined to be
\[
Y_{1}(x)=-\frac{1}{\pi} \int_{0}^{\pi} \sin (\theta-x \sin \theta) d \theta-\frac{1}{\pi} \int_{0}^{\infty}\left\{e^{t}-e^{-t}\right\} e^{-x \sinh t} d t
\]
\(Y_{1}(x)\) is defined for \(x>0\). To prevent the answer from being less accurate than half precision, \(x\) should be smaller than
\[
1 / \sqrt{\varepsilon}
\]

For the result to have any precision at all, \(|x|\) must be less than \(1 / \varepsilon\). Here, \(\varepsilon\) is the machine precision, \(\varepsilon=\operatorname{AMACH}(4)\).

\section*{Example}

In this example, \(Y_{1}(3.0)\) is computed and printed.
```

 USE BSY1_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X=3.0
VALUE = BSY1 (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSY1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSY1(3.000)=0.325

```

\section*{BSIO}

This function evaluates the modified Bessel function of the first kind of order zero.

\section*{Function Return Value}

BSIO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSIO \((\mathrm{x})\) \\
Specific: & The specific interface names are S_BSI0 and D_BSIO.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: \(\quad\) BSIO (x)

Double: \(\quad\) The double precision function name is DBSIO.

\section*{Description}

The Bessel function \(I_{0}(x)\) is defined to be
\[
I_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cosh (x \cos \theta) d \theta
\]

The absolute value of the argument \(x\) must not be so large that \(e^{|x|}\) overflows.


Figure 6.3 - Plot of \(\mathrm{I}_{0}(x)\) and \(\mathrm{I}_{\mathrm{I}}(x)\)

\section*{Example}

In this example, \(I_{0}\) (4.5) is computed and printed.
```

USE BSIO_INT
USE UMACH_INT
IMPLICIT NONE Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
x = 4.5
VALUE = BSIO(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSIO(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSIO(4.500)=17.481

```

\section*{BSI1}

This function evaluates the modified Bessel function of the first kind of order one.

\section*{Function Return Value}

BSI1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSI1 \((\mathrm{X})\) \\
Specific: & The specific interface names are S_BSI1 and D_BSI1.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: BSI1 (X)

Double: \(\quad\) The double precision function name is DBSI1.

\section*{Description}

The Bessel function \(I_{1}(x)\) is defined to be
\[
I_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos \theta} \cos \theta d \theta
\]

The argument should not be so close to zero that \(I_{1}(x) \approx x / 2\) underflows, nor so large in absolute value that \(e^{|x|}\) and, therefore, \(I_{1}(x)\) overflows.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because the absolute value of x is too small.
\end{tabular}

\section*{Example}

In this example, \(I_{1}(4.5)\) is computed and printed.
```

 USE BSI1_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
!
= 4.5
VALUE = BSI1 (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSI1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSI1(4.500) = 15.389

```

\section*{BSKO}

This function evaluates the modified Bessel function of the second kind of order zero.

\section*{Function Return Value}

BSKO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{Fortran 90 Interface}

Generic: BSK0 (x)
Specific: The specific interface names are S_BSK0 and D_BSK0.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSK0 (X) \\
Double: & The double precision function name is DBSK0.
\end{tabular}

\section*{Description}

The Bessel function \(K_{0}(x)\) is defined to be
\[
K_{0}(x)=\int_{0}^{\infty} \cos (x \sinh t) d t
\]

The argument must be larger than zero, but not so large that the result, approximately equal to
\[
\sqrt{\pi /(2 x)} e^{-x}
\]
underflows.


Figure 6.4 - Plot of \(\mathrm{K}_{0}(x)\) and \(\mathrm{K}_{1}(x)\)

\section*{Comments}

Informational Error

\section*{Type Code Description}

21 The function underflows because x is too large.

\section*{Example}

In this example, \(K_{0}(0.5)\) is computed and printed.


Output
BSKO ( 0.500 ) \(=0.924\)

\section*{BSK1}

This function evaluates the modified Bessel function of the second kind of order one.

\section*{Function Return Value}

BSK1 — Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSK1 \((\mathrm{X})\) \\
Specific: & The specific interface names are \(S \_B S K 1\) and D_BSK1.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSK1 (X) \\
Double: & The double precision function name is DBSK1.
\end{tabular}

\section*{Description}

The Bessel function \(K_{1}(x)\) is defined to be
\[
K_{1}(x)=\int_{0}^{\infty} \sin (x \sinh t) \sinh t d t
\]

The argument \(x\) must be large enough \((>\max (1 / b, s))\) that \(K_{1}(x)\) does not overflow, and \(x\) must be small enough that the approximate answer,
\[
\sqrt{\pi /(2 x)} e^{-x}
\]
does not underflow. Here, \(s\) is the smallest representable positive floating-point number, \(s=\operatorname{AMACH}(1)\), and \(b=\operatorname{AMACH}(2)\) is the largest representable floating-point number.

\section*{Comments}

Informational Error

\section*{Type \\ Code \\ Description}

2
1
The function underflows because x is too large.

\section*{Example}

In this example, \(K_{1}(0.5)\) is computed and printed.
```

 USE BSK1_INT
 USE UMACH_INT
 IMPLICIT NONE
 Declare variables
 INTEGER NOUT
 REAL VALUE, X
 X = 0.5
 VALUE = BSK1 (X)
 !
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSK1(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

BSK1(0.500)=1.656

```

\section*{BSIOE}

This function evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

\section*{Function Return Value}

BSIOE - Function value. (Output)

\section*{Required Arguments}
\(X-\) Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSIOE \((X)\) \\
Specific: & The specific interface names are S_BSIOE and D_BSI0E.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: BSIOE (x)

Double: The double precision function name is DBSIOE.

\section*{Description}

Function BSIOE computes \(\mathrm{e}^{-|x|} I_{0}(x)\). For the definition of the Bessel function \(I_{0}(x)\), see BSI0.

\section*{Example}

In this example, \(\operatorname{BSI} \operatorname{E}(4.5)\) is computed and printed.
```

 USE BSIOE_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! NOUT
REAL VALUE, X
X = 4.5
VALUE = BSIOE(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSIOE(', F6.3, ') = ', F6.3)
END

```
\(!\)

Output
```

BSIOE $(4.500)=0.194$

```

\section*{BSIIE}

This function evaluates the exponentially scaled modified Bessel function of the first kind of order one.

\section*{Function Return Value}

BSI1E - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BSI1E (X) \\
Specific: & The specific interface names are S_BSI1E and D_BSI1E.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSI1E \((X)\) \\
Double: & The double precision function name is DBSI1E.
\end{tabular}

\section*{Description}

Function BSI1E computes \(\mathrm{e}^{-|x|} I_{1}(x)\). For the definition of the Bessel function \(I_{1}(x)\), see BSI1. The function BSI1E underflows if \(|x| / 2\) underflows.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because the absolute value of x is too small.
\end{tabular}

\section*{Example}

In this example, \(\operatorname{BSI1E}(4.5)\) is computed and printed.
```

USE BSI1E_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X

```
\(!\)
```

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSI1E(', F6.3, ') = ', F6.3)
END

```

\section*{Output}

BSI1E ( 4.500\()=0.171\)

\section*{BSKOE}

This function evaluates the exponentially scaled modified Bessel function of the second kind of order zero.

\section*{Function Return Value}

BSK0E - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
```

 Generic: BSK0E (X)
 Specific: The specific interface names are S_BSK0E and D_BSK0E.
    ```

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSK0E \((\mathrm{X})\) \\
Double: & The double precision function name is DBSK0E.
\end{tabular}

\section*{Description}

Function BSK0E computes \(\mathrm{e}^{x} K_{0}(x)\). For the definition of the Bessel function \(K_{0}(x)\), see BSK 0 . The argument must be greater than zero for the result to be defined.

\section*{Example}

In this example, \(\operatorname{BSK} 0 \mathrm{E}(0.5)\) is computed and printed.
```

USE BSKOE_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 0.5
VALUE = BSK0E(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSK0E(', F6.3, ') = ', F6.3)
END

```
\(!\)

Output
\(\operatorname{BSKOE}(0.500)=1.524\)

\section*{BSK1E}

This function evaluates the exponentially scaled modified Bessel function of the second kind of order one.

\section*{Function Return Value}

BSK1E - Function value. (Output)

\section*{Required Arguments}
\(X-\) Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
```

Generic: BSK1E (X)
Specific: The specific interface names are S_BSK1E and D_BSK1E.

```

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BSK1E \((X)\) \\
Double: & The double precision function name is DBSK1E.
\end{tabular}

\section*{Description}

Function BSK1E computes \(\mathrm{e}^{x} K_{1}(x)\). For the definition of the Bessel function \(K_{1}(x)\), see BSK1. The answer BSK1E \(=\mathrm{e}^{x} K_{1}(x) \approx 1 / x\) overflows if \(x\) is too close to zero.

\section*{Example}

In this example, \(\operatorname{BSK} 1 \mathrm{E}(0.5)\) is computed and printed.
```

 USE BSK1E_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
X=0.5
VALUE = BSK1E(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSK1E(', F6.3, ') = ', F6.3)
END

```

Output
```

BSK1E(0.500)=2.731

```

\section*{BSJNS}

Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex arguments.

\section*{Required Arguments}
\(X\) - Argument for which the sequence of Bessel functions is to be evaluated. (Input)
The absolute value of real arguments must be less than \(10^{4}\).
The absolute value of complex arguments must be less than \(10^{4}\).
\(N\) - Number of elements in the sequence. (Input)
It must be a positive integer.
\(B S\) - Vector of length \(N\) containing the values of the function through the series. (Output)
\(B S(I)\) contains the value of the Bessel function of order \(I-1\) at \(x\) for \(I=1\) to \(N\).

\section*{FORTRAN 90 Interface}

Generic: CALL BSJNS (X, N, BS)
Specific: The specific interface names are S_BSJNS, D_BSJNS, C_BSJNS, and Z_BSJNS.

\section*{FORTRAN 77 Interface}

Single: CALL BSJNS (X, N, BS)
Double: \(\quad\) The double precision name is DBSJNS.
Complex: The complex name is CBJNS.
Double Complex: The double complex name is DCBJNS.

\section*{Description}

The complex Bessel function \(J_{n}(z)\) is defined to be
\[
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \theta-n \theta) d \theta
\]

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion with strict error control.

\section*{Examples}

\section*{Example 1}

In this example, \(J_{n}(10.0), n=0, \ldots, 9\) is computed and printed.
```

USE BSJNS_INT
USE UMACH_INT

```
```

 IMPLICIT NONE
 ! Declare variables
INTEGER N
PARAMETER (N=10)
!
INTEGER K, NOUT
REAL BS(N), X
X = 10.0
CALL BSJNS (X, N, BS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, BS(K)
1 0 ~ C O N T I N U E
99999 FORMAT (' J sub ', I2, ' (', F6.3, ') = ', F6.3)
END

```

\section*{Output}
J sub \(0(10.000)=-0.246\)
J sub \(1(10.000)=0.043\)
J sub \(2(10.000)=0.255\)
J sub \(3(10.000)=0.058\)
J sub \(4(10.000)=-0.220\)
J sub \(5(10.000)=-0.234\)
J sub \(6(10.000)=-0.014\)
J sub \(7(10.000)=0.217\)
J sub \(8(10.000)=0.318\)
J sub \(9(10.000)=0.292\)

\section*{Example 2}

In this example, \(J_{n}(10+10 i), n=0, \ldots, 10\) is computed and printed.
```

 USE BSJNS_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER N
 PARAMETER (N=11)
 !
INTEGER K, NOUT
COMPLEX CBS(N), Z
Z = (10.0, 10.0)
CALL BSJNS (Z, N, CBS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, Z, CBS(K)
1 0
CONTINUE

```
```

99999 FORMAT (' J sub ', I2, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```

\section*{Output}
\begin{tabular}{|c|c|c|c|c|}
\hline S & 0 & \(((10.000,10.000))\) & & 411.563) \\
\hline J sub & 1 & \(((10.000,10.000))\) & ( & 7) \\
\hline J S & 2 & & 2 & -590.157) \\
\hline S & 3 & \(((10.000,10.000))\) & ( & \\
\hline J s & 4 & \(((10.000,10.000))\) & (-1302.871, & \(880.632)\) \\
\hline S & 5 & 10. & ( -920. & -84 \\
\hline J sub & 6 & (10.000,10.000) & 419.501, & 843. \\
\hline S & 7 & \((10.000,10.000)\) & ( 665. & 88. \\
\hline J sub & 8 & (10.000,10.000) & ( 108.586 & \(439.392)\) \\
\hline J sub & 9 & (10.000,10.000) & \(=(-227.548\), & 176.165) \\
\hline sul & 1 & \(((10.000,10.000))\) & ( -154.831, & -76.050) \\
\hline
\end{tabular}

\section*{BSINS}

Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or complex arguments.

\section*{Required Arguments}
\(X\) - Argument for which the sequence of Bessel functions is to be evaluated. (Input)
For real argument \(\exp (|x|)\) must not overflow. For complex arguments \(x\) must be less than \(10^{4}\) in absolute value.
\(N\) - Number of elements in the sequence. (Input)
BSI - Vector of length \(N\) containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order \(\mathrm{I}-1\) at \(x\) for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL BSINS ( \(\mathrm{X}, \mathrm{N}, \mathrm{BSI}\) )
Specific: The specific interface names are S_BSINS, D_BSINS, C_BSINS, and Z_BSINS.

\section*{FORTRAN 77 Interface}

Single: CALL BSINS ( \(\mathrm{X}, \mathrm{N}, \mathrm{BSI}\) )
Double: The double precision name is DBSINS.
Complex: The complex name is CBINS.
Double Complex: The double complex name is DCBINS.

\section*{Description}

The complex Bessel function \(I_{n}(z)\) is defined to be
\[
I_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} e^{z \cos \theta} \cos (n \theta) d \theta
\]

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion with strict error control.

\section*{Examples}

\section*{Example 1}

In this example, \(I_{n}(10.0), n=0, \ldots, 10\) is computed and printed.
```

USE BSINS_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables

INTEGER	N
PARAMETER	$(\mathrm{N}=11)$
$!$	
INTEGER	$\mathrm{K}, ~$ NOUT
REAL	$\operatorname{BSI}(\mathrm{N}), \mathrm{X}$

!
X = 10.0
CALL BSINS (X, N, BSI)
!
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, BSI(K)
CONTINUE
99999 FORMAT (' I sub ', I2, ' (', F6.3, ') = ', F9.3)
END

```

\section*{Output}
I sub \(0(10.000)=2815.716\)
I sub \(1(10.000)=2670.988\)
I sub \(2(10.000)=2281.519\)
I sub \(3(10.000)=1758.381\)
I sub \(4(10.000)=1226.490\)
I sub \(5(10.000)=777.188\)
I sub \(6(10.000)=449.302\)
I sub \(7(10.000)=238.026\)
I sub \(8(10.000)=116.066\)
I sub \(9(10.000)=52.319\)
I sub \(10(10.000)=21.892\)

\section*{Example 2}

In this example, \(I_{n}(10+10 i), n=0, \ldots, 10\) is computed and printed.
```

 USE BSINS_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER N
 PARAMETER (N=11)
 !
INTEGER K, NOUT
COMPLEX CBS(N), Z
! Compute
Z = (10.0, 10.0)
CALL BSINS (Z, N, CBS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, Z, CBS (K)
1 0
CONTINUE

```
```

99999 FORMAT (' I sub ', I2, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```

\section*{Output}
I sub \(0((10.000,10.000))=(-2314.975,-411.563)\)
I sub \(1((10.000,10.000))=(-2246.627,-460.681)\)
I sub \(2((10.000,10.000))=(-2044.245,-590.157)\)
I sub \(3((10.000,10.000))=(-1719.746,-751.498)\)
I sub \(4((10.000,10.000))=(-1302.871,-880.632)\)
I sub \(5((10.000,10.000))=(-846.345,-920.394)\)
I sub \(6((10.000,10.000))=(-419.501,-843.607)\)
I sub \(7((10.000,10.000))=(-88.480,-665.930)\)
I sub \(8((10.000,10.000))=(108.586,-439.392)\)
I sub \(9((10.000,10.000))=(176.165,-227.548)\)
I sub \(10((10.000,10.000))=(154.831,-76.050)\)

\section*{BSJS}

Evaluates a sequence of Bessel functions of the first kind with real order and real positive arguments.

\section*{Required Arguments}

XNU - Real argument which is the lowest order desired. (Input) It must be at least zero and less than one.
\(X\) - Real argument for which the sequence of Bessel functions is to be evaluated. (Input) It must be nonnegative.
\(N\) - Number of elements in the sequence. (Input)
BS - Vector of length \(N\) containing the values of the function through the series. (Output) \(\mathrm{BS}(\mathrm{I})\) contains the value of the Bessel function of order \(\mathrm{XNU}+\mathrm{I}-1\) at \(x\) for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL BSJS (XNU, X, N, BS)
Specific: The specific interface names are S_BSJS and D_BSJS.

\section*{FORTRAN 77 Interface}

Single: CALL BSJS (XNU, X, N, BS)
Double: The double precision name is DBSJS.

\section*{Description}

The Bessel function \(J_{v}(x)\) is defined to be
\[
J_{v}(x)=\frac{(x / 2)^{v}}{\sqrt{\pi} \Gamma(v+1 / 2)} \int_{0}^{\pi} \cos (x \cos \theta) \sin ^{2 v} \theta d \theta
\]

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward recursion.

\section*{Comments}

Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is CALL B2JS (XNU, X, N, BS, WK)

The additional argument is
WK - work array of length 2 * N .

\section*{Example}

In this example, \(J_{v}(2.4048256), v=0, \ldots, 10\) is computed and printed.
```

 USE BSJS_INT
 USE UMACH_INT
 IMPLICIT NONE
 Declare variables
 INTEGER N
 PARAMETER (N=11)
 !
INTEGER K, NOUT
REAL BS (N), X, XNU
XNU = 0.0
X=2.4048256
CALL BSJS (XNU, X, N, BS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BS(K)
CONTINUE
99999 FORMAT (' J sub ', F6.3, ' (', F6.3, ') = ', F10.3)
END

```

\section*{Output}
\begin{tabular}{llll} 
J sub \(0.000(2.405)\) & \(=\) & 0.000 \\
\(J\) sub \(1.000(2.405)\) & \(=\) & 0.519 \\
J sub \(2.000(2.405)\) & \(=\) & 0.432 \\
J sub \(3.000(2.405)\) & \(=\) & 0.199 \\
J sub \(4.000(2.405)\) & \(=\) & 0.065 \\
J sub \(5.000(2.405)\) & \(=\) & 0.016 \\
J sub \(6.000(2.405)\) & \(=\) & 0.003 \\
J sub \(7.000(2.405)\) & \(=\) & 0.001 \\
J sub \(8.000(2.405)\) & \(=\) & 0.000 \\
J sub \(9.000(2.405)\) & \(=\) & 0.000 \\
J sub \(10.000(2.405)\) & \(=\) & 0.000
\end{tabular}

\section*{BSYS}

Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real positive arguments.

\section*{Required Arguments}

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.
\(X\) - Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
\(B S Y\) - Vector of length N containing the values of the function through the series. (Output)
\(B S Y(I)\) contains the value of the Bessel function of order \(I-1+X N U\) at \(x\) for \(I=1\) to \(N\).

\section*{FORTRAN 90 Interface}

Generic: CALL BSYS (XNU, \(\mathrm{X}, \mathrm{N}, \mathrm{BSY}\) )
Specific: The specific interface names are S_BSYS and D_BSYS.

\section*{FORTRAN 77 Interface}

Single: CALL BSYS (XNU, X, N, BSY)
Double: The double precision name is DBSYS.

\section*{Description}

The Bessel function \(Y_{v}(x)\) is defined to be
\[
Y_{v}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \theta-v \theta) d \theta-\frac{1}{\pi} \int_{0}^{\infty}\left[e^{v t}+e^{-v t} \cos (v \pi)\right] e^{-x \sinh t} d t
\]

The variable \(v\) must satisfy \(0 \leq v<1\). If this condition is not met, then BSY is set to \(-b\). In addition, \(x\) must be in \(\left[x_{m}, x_{M}\right]\) where \(x_{m}=6\left(16^{-32}\right)\) and \(x_{M}=16^{9}\). If \(x<x_{M}\), then \(-b(b=\operatorname{AMACH}(2)\), the largest representable number) is returned; and if \(x>x_{M}\), then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS FUNPACK 1976). It uses a special series expansion for small arguments. For moderate arguments, an analytic continuation in the argument based on Taylor series with special rational minimax approximations providing starting values is employed. An asymptotic expansion is used for large arguments.

\section*{Example}

In this example, \(\mathrm{Y}_{0.015625+v-1}(0.0078125), v=1,2,3\) is computed and printed.
```

 USE BSYS_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER N
PARAMETER (N=3)
!
INTEGER K, NOUT
REAL BSY(N), X, XNU
XNU = 0.015625
X = 0.0078125
CALL BSYS (XNU, X, N, BSY)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BSY(K)
10 CONTINUE
99999 FORMAT (' Y sub ',F6.3,' (',F6.3, ') = ', F10.3)
END

```

\section*{Output}
```

Y sub 0.016 (0.008)= -3.189
Y sub 1.016 (0.008) = -88.096
Y sub 2.016 (0.008) = -22901.732

```

\section*{BSIS}

Evaluates a sequence of modified Bessel functions of the first kind with real order and real positive arguments.

\section*{Required Arguments}
\(X N U\) - Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.
\(X\) - Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
BSI - Vector of length N containing the values of the function through the series. (Output) \(B S I(I)\) contains the value of the Bessel function of order \(I-1+\mathrm{XNU}\) at \(x\) for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL BSIS (XNU, \(\mathrm{x}, \mathrm{N}, \mathrm{BSI}\) )
Specific: The specific interface names are S_BSIS and D_BSIS.

\section*{FORTRAN 77 Interface}

Single:
CALL BSIS (XNU, X, N, BSI)
Double: The double precision name is DBSIS.

\section*{Description}

The Bessel function \(I_{v}(x)\) is defined to be
\[
I_{v}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos \theta} \cos (v \theta) d \theta-\frac{\sin (v \pi)}{\pi} \int_{0}^{\infty} e^{-x \cosh t-v t} d t
\]

The input \(x\) must be nonnegative and less than or equal to \(\log (b)(b=\operatorname{AMACH}(2)\), the largest representable number). The argument \(v=\) XNU must satisfy \(0 \leq v \leq 1\).

Function BSIS is based on a code due to Cody (1983), which uses backward recursion.

\section*{Example}

In this example, \(I_{v-1}(10.0), v=1, \ldots, 10\) is computed and printed.
```

 USE BSIS_INT
 USE UMACH_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=10)

```
\(!\)
```

INTEGER K, NOUT
REAL BSI (N), X, XNU
XNU = 0.0
X = 10.0
CALL BSIS (XNU, X, N, BSI)
!
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BSI (K)
1 0 ~ C O N T I N U E ~
99999 FORMAT (' I sub ', F6.3, ' (', F6.3, ') = ', F10.3)
END

```

\section*{Output}
I sub \(0.000(10.000)=2815.717\)
I sub \(1.000(10.000)=2670.988\)
I sub \(2.000(10.000)=2281.519\)
I sub \(3.000(10.000)=1758.381\)
I sub \(4.000(10.000)=1226.491\)
I sub \(5.000(10.000)=777.188\)
I sub \(6.000(10.000)=\)
I sub \(7.000(10.000)=\)
I sub \(8.000(10.000)=238.026\)
I sub \(9.000(10.000)\)

\section*{BSIES}

Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with nonnegative real order and real positive arguments.

\section*{Required Arguments}
\(X N U\) - Real argument which is the lowest order desired. (Input) It must be at least zero and less than one.
\(X\) - Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input) It must be nonnegative.
\(N\) - Number of elements in the sequence. (Input)
BSI - Vector of length \(N\) containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order I \(-1+\mathrm{XNU}\) at \(x\) for \(I=1\) to N multiplied by \(\exp (-X)\).

\section*{FORTRAN 90 Interface}

Generic: CALL BSIES (XNU, X, N, BSI)
Specific: The specific interface names are S_BSIES and D_BSIES.

\section*{FORTRAN 77 Interface}

Single: CALL BSIES (XNU, X, N, BSI)
Double: The double precision name is DBSIES.

\section*{Description}

Function BSIES evaluates \(e^{-x} I_{v^{+} k+1}(x)\), for \(k=1, \ldots, n\). For the definition of \(I_{v}(x)\), see BSIS. The algorithm is based on a code due to Cody (1983), which uses backward recursion.

\section*{Example}

In this example, \(I_{v-1}(10.0), v=1, \ldots, 10\) is computed and printed.
```

 USE BSIES_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER N
 PARAMETER (N=10)
 INTEGER K, NOUT
 REAL BSI (N), X, XNU
    ```
```

! Compute
XNU = 0.0
X=10.0
CALL BSIES (XNU, X, N, BSI)
!
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K)
CONTINUE
99999 FORMAT (' exp (-', F6.3, ') * I sub ', F6.3, \&
' (', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

exp(-10.000) * I sub 0.000 (10.000) = 0.128
exp(-10.000) * I sub 1.000 (10.000) = 0.121
exp(-10.000) * I sub 2.000 (10.000) = 0.104
exp(-10.000) * I sub 3.000 (10.000) = 0.080
exp(-10.000) * I sub 4.000 (10.000) = 0.056
exp(-10.000) * I sub 5.000 (10.000) = 0.035
exp(-10.000) * I sub 6.000 (10.000) = 0.020
exp(-10.000) * I sub 7.000 (10.000) = 0.011
exp(-10.000) * I sub 8.000 (10.000) = 0.005
exp(-10.000) * I sub 9.000 (10.000) = 0.002

```

\section*{BSKS}

Evaluates a sequence of modified Bessel functions of the second kind of fractional order.

\section*{Required Arguments}

XNU - Fractional order of the function. (Input)
XNU must be less than one in absolute value.
\(X\) - Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)
BK - Vector of length NIN containing the values of the function through the series. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BSKS (XNU, X, NIN, BK)
Specific: The specific interface names are S_BSKS and D_BSKS.

\section*{FORTRAN 77 Interface}

Single: CALL BSKS (XNU, X, NIN, BK)
Double: The double precision name is DBSKS.

\section*{Description}

The Bessel function \(K_{v}(x)\) is defined to be
\[
K_{v}(x)=\frac{\pi}{2} e^{v \pi i / 2}\left[i J_{v}\left(x e^{\frac{\pi}{2} i}\right)-Y_{v}\left(x e^{\frac{\pi}{2} i}\right)\right] \quad \text { for }-\pi<\arg x \leq \frac{\pi}{2}
\]

Currently, \(v\) is restricted to be less than one in absolute value. A total of \(|n|\) values is stored in the array BK. For positive \(n, \operatorname{BK}(1)=K_{v}(x), \operatorname{BK}(2)=K_{v+1}(x), \ldots, \operatorname{BK}(n)=K_{v+n-1}(x)\). For negative \(n, \operatorname{BK}(1)=K_{v}(x)\), \(\operatorname{BK}(2)=K_{v-1}(x), \ldots, \operatorname{BK}(|n|)=K_{v+n+1}\)

BSKS is based on the work of Cody (1983).

\section*{Comments}
1. If NIN is positive, \(B K(1)\) contains the value of the function of order XNU, \(B K(2)\) contains the value of the function of order XNU \(+1, \ldots\) and BK(NIN) contains the value of the function of order XNU + NIN -1 .
2. If NIN is negative, \(\operatorname{BK}(1)\) contains the value of the function of order \(X N U, B K(2)\) contains the value of the function of order XNU \(-1, \ldots\) and \(\operatorname{BK}(\operatorname{ABS}(N I N))\) contains the value of the function of order XNU + NIN +1 .

\section*{Example}

In this example, \(K_{v-1}(10.0), v=1, \ldots, 10\) is computed and printed.
```

 USE BSKS_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NIN
 PARAMETER (NIN=10)
 !
INTEGER K, NOUT
REAL BS (NIN), X, XNU
XNU = 0.0
X = 10.0
CALL BSKS (XNU, X, NIN, BS)
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999) XNU+K-1, X, BS(K)
1 0 ~ C O N T I N U E ~
99999 FORMAT (' K sub ', F6.3, ' (', F6.3, ') = ', E10.3)
END

```

\section*{Output}
K sub \(0.000(10.000)=0.178 \mathrm{E}-04\)
K sub \(1.000(10.000)=0.186 \mathrm{E}-04\)
K sub \(2.000(10.000)=0.215 \mathrm{E}-04\)
K sub \(3.000(10.000)=0.273 \mathrm{E}-04\)
K sub \(4.000(10.000)=0.379 \mathrm{E}-04\)
K sub \(5.000(10.000)=0.575 \mathrm{E}-04\)
K sub \(6.000(10.000)=0.954 \mathrm{E}-04\)
K sub \(7.000(10.000)=0.172 \mathrm{E}-03\)
K sub \(8.000(10.000)=0.336 \mathrm{E}-03\)
K sub \(9.000(10.000)=0.710 \mathrm{E}-03\)

\section*{BSKES}

Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of fractional order.

\section*{Required Arguments}
\(X N U\) - Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.
\(X\) - Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN - Number of elements in the sequence. (Input)
BKE - Vector of length NIN containing the values of the function through the series. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BSKES (XNU, X, NIN, BKE)
Specific: The specific interface names are S_BSKES and D_BSKES.

\section*{FORTRAN 77 Interface}

Single: CALL BSKES (XNU, X, NIN, BKE)
Double: The double precision name is DBSKES.

\section*{Description}

Function BSKES evaluates \(e^{x} K_{v+k-1}(x)\), for \(k=1, \ldots, n\). For the definition of \(K_{v}(x)\), see BSKS.
Currently, \(v\) is restricted to be less than 1 in absolute value. A total of \(|n|\) values is stored in the array BKE. For \(n\) positive, \(\operatorname{BKE}(1)\) contains \(e^{x} K_{v}(x)\), \(\operatorname{BKE}(2)\) contains \(e^{x} K_{v+1}(x), \ldots\), and \(\operatorname{BKE}(\mathrm{N})\) contains \(e^{x} K_{v+n-1}(x)\). For \(n\) negative, \(\operatorname{BKE}(1)\) contains \(e^{x} K_{v}(x)\), \(\operatorname{BKE}(2)\) contains \(e^{x} K_{v-1}(x), \ldots\), and \(\operatorname{BKE}(|n|)\) contains \(e^{x} K_{v+n+1}(x)\). This routine is particularly useful for calculating sequences for large \(x\) provided \(n \leq x\). (Overflow becomes a problem if \(n \ll x\).) \(n\) must not be zero, and \(x\) must not be greater than zero. Moreover, \(|v|\) must be less than 1 . Also, when \(|n|\) is large compared with \(x,|v+n|\) must not be so large that
\(e^{x} K_{v+n}(x) \approx e^{x} \Gamma(|v+n|) /\left[2(x 2)^{|v+n|}\right]\) overflows.
BSKES is based on the work of Cody (1983).

\section*{Comments}
1. If NIN is positive, \(\operatorname{BKE}(1)\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU, \(\operatorname{BKE}(2)\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU \(+1, \ldots\), and \(\operatorname{BKE}(\mathrm{NIN})\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU + NIN -1 .
2. If NIN is negative, \(\operatorname{BKE}(1)\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU, \(\operatorname{BKE}(2)\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU \(-1, \ldots\), and \(\operatorname{BKE}(\operatorname{ABS}(\mathrm{NIN}))\) contains \(\operatorname{EXP}(\mathrm{X})\) times the value of the function of order XNU + NIN +1 .

\section*{Example}

In this example, \(K_{v-1 / 2}(2.0), v=1, \ldots, 6\) is computed and printed.
```

 USE BSKES_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NIN
 PARAMETER (NIN=6)
 !
INTEGER K, NOUT
REAL BKE(NIN), X, XNU
XNU = 0.5
X = 2.0
CALL BSKES (XNU, X, NIN, BKE)
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999) X, XNU+K-1, X, BKE(K)
1 0 ~ C O N T I N U E ~
99999 FORMAT (' exp(', F6.3, ') * K sub ', F6.3, \&
' (', F6.3, ') = ', F8.3)
END

```

\section*{Output}
```

exp(2.000) * K sub 0.500 (2.000) = 0.886
exp(2.000)* K sub 1.500 (2.000) = 1.329
exp(2.000)* K sub 2.500 (2.000) = 2.880
exp(2.000)* K sub 3.500 (2.000) = 8.530
exp(2.000) * K sub 4.500 (2.000) = 32.735
exp(2.000)* K sub 5.500 (2.000) = 155.837

```

\section*{CBJS}

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

\section*{Required Arguments}

XNU - Real argument which is the lowest order desired. (Input)
XNU must be greater than \(-1 / 2\).
\(\mathbf{Z}\) - Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
CBS - Vector of length N containing the values of the function through the series. (Output)
\(\operatorname{CBS}(I)\) contains the value of the Bessel function of order XNU \(+I-1\) at \(Z\) for \(I=1\) to \(N\).

\section*{FORTRAN 90 Interface}

Generic: CALL CBJS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBJS and D_CBJS.

\section*{FORTRAN 77 Interface}

Single: CALL CBJS (XNU, Z, N, CBS)
Double: The double precision name is DCBJS.

\section*{Description}

The Bessel function \(J_{V}(z)\) is defined to be
\[
\begin{aligned}
& J_{v}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \theta-v \theta) d \theta-\frac{\sin (v \pi)}{\pi} \int_{0}^{\infty} e^{-z \sinh t-v t} d t \\
& \quad \text { for }|\arg z|<\frac{\pi}{2}
\end{aligned}
\]

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).
This code computes \(J_{V}(z)\) from the modified Bessel function \(I_{V}(z)\), CBIS, using the following relation:
\[
J_{v}(z)= \begin{cases}i^{v} I_{v}(-i z) & \text { for }-\frac{\pi}{2}<\arg z \leq \pi \\ i^{-3 v} I_{v}(-i z) & \text { for } \quad \pi<\arg z \leq \frac{3 \pi}{2}\end{cases}
\]

CBJS implements the Yousif and Melka (Y\&M) algorithm (Yousif and Melka (1997)) for approximating \(J_{V}(z)\) with a Taylor series expansion when \(x \sim 0\) or \(y \sim 0\), where complex argument \(z=x+i y\) and " \(x \sim 0\) " \(==\) " \(|x|<\operatorname{amach}(4) "\). To be consistent with the existing CBJS argument definitions, the original Y\&M algorithm, which was limited to integral order and to ( \(x \sim 0\) and \(y \geq 0\) ) or ( \(y \sim 0\) and \(x \geq 0\) ), has been generalized to also work for integral and real order \(v>-1\), and for \((x \sim 0\) and \(y<0)\) and \((y \sim 0\) and \(x<0)\).

To deal with the Bessel function discontinuity that occurs at the negative x axis, the following procedure is used for calculating the \(\mathrm{Y} \& \mathrm{M}\) approximation of \(J_{\nu}(z)\) with argument \(z=x+i y\) when \(((x \sim 0\) and \(y<0)\) or \((y \sim 0\) and \(x<0)\) ):
1. Calculate the \(\mathrm{Y} \& \mathrm{M}\) approximation of \(J_{V}(-z)\).
2. If \((y>0)\), use forward rotation, otherwise use backward rotation, to calculate the Bessel function \(J_{V}(z)\), where the "forward" and "backward" rotation transformations are defined as:
\[
\begin{aligned}
& \text { forward: } J_{\nu}(z)=e^{v \pi i} J_{\nu}(-z)=i^{2 v} J_{\nu}(-z) \\
& \text { backward: } J_{V}(z)=e^{-v \pi i} J_{\nu}(-z)=i^{-2 v} J_{\nu}(-z)
\end{aligned}
\]

These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.35: \(J_{\nu}\left(z e^{m \pi i}\right)=e^{m v \pi i} J_{\nu}(z)\), where \(m=1\) represents forward transformation and \(m=-1\) represents backward transformation. These specified rotations insure that the continuous rotation transformation \(J_{v}(-z) \rightarrow J_{v}(z)\) does not cross the negative x axis, so no discontinuity is encountered.

\section*{Comments}

Informational Errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 1 & One of the continued fractions failed. \\
4 & 2 & Only the first several entries in CBS are valid.
\end{tabular}

\section*{Example}

In this example, \(J_{0.3+k-1}(1.2+0.5 i), k=1, \ldots, 4\) is computed and printed.
```

USE CBJS_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=4)
INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
XNU = 0.3
Z = (1.2, 0.5)
CALL CBJS (XNU, Z, N, CBS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)

```

0 CONTINUE
```

99999 FORMAT (' J sub ', F6.3, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```

\section*{Output}
\begin{tabular}{lrlll}
\(J\) sub \(0.300((1.200,0.500))\) & \(=(\) & 0.774, & \(-0.107)\) \\
\(J\) sub \(1.300((1.200,0.500))\) & \(=(\) & 0.400, & \(0.159)\) \\
\(J\) sub \(2.300((1.200,0.500))=(\) & 0.087, & \(0.092)\) \\
\(J\) sub \(3.300((1.200,0.500))=(\) & 0.008, & \(0.024)\)
\end{tabular}

\section*{CBYS}

Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

\section*{Required Arguments}

XNU - Real argument which is the lowest order desired. (Input)
XNU must be greater than \(-1 / 2\).
\(\mathbf{Z}\) - Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
CBS - Vector of length \(N\) containing the values of the function through the series. (Output)
\(\operatorname{CBS}(I)\) contains the value of the Bessel function of order XNU \(+I-1\) at \(Z\) for \(I=1\) to \(N\).

\section*{FORTRAN 90 Interface}

Generic: CALL CBYS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBYS and D_CBYS.

\section*{FORTRAN 77 Interface}

Single:
CALL CBYS (XNU, Z, N, CBS)
Double: The double precision name is DCBYS.

\section*{Description}

The Bessel function \(Y_{\downarrow}(z)\) is defined to be
\[
\begin{aligned}
& Y_{v}(z)=\frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin \theta-v \theta) d \theta-\frac{1}{\pi} \int_{0}^{\infty}\left[e^{v t}+e^{-v t} \cos (v \pi)\right] e^{-z \sinh t} d t \\
& \quad \text { for }|\arg z|<\frac{\pi}{2}
\end{aligned}
\]

This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).
This code computes \(Y_{\mathcal{L}}(z)\) from the modified Bessel functions \(I_{\mathcal{V}}(z)\) and \(K_{\mathcal{V}}(z)\), CBIS and CBKS, using the following relation:
\[
Y_{v}\left(z e^{\pi i / 2}\right)=e^{(v+1) \pi i / 2} I_{v}(z)-\frac{2}{\pi} e^{-v \pi i / 2} K_{v}(z) \quad \text { for }-\pi<\arg z \leq \frac{\pi}{2}
\]

CBYS implements the Yousif and Melka (Y\&M) algorithm (Yousif and Melka(2003)) for approximating \(Y_{v}(z)\) with a Taylor series expansion when \(x \sim 0\) or \(y \sim 0\), where complex argument \(z=x+i y\) and \(" x \sim 0 "=="|x|<\operatorname{amach}(4) "\). To be consistent with the existing CBYS argument definitions, the original Y\&M algorithm, which was limited to integral order and to ( \(x \sim 0\) and \(y \geq 0\) ) or ( \(y \sim 0\) and \(x \geq 0\) ), has been generalized to also work for integral and real order \(v>-1\), and for \((x \sim 0\) and \(y<0)\) and \((y \sim 0\) and \(x<0)\).

To deal with the Bessel function discontinuity occurring at the negative x axis, the following procedure is used for calculating the Y\&M approximation of \(Y_{\nu}(z)\) with argument \(z=x+i y\) when \(((x \sim 0\) and \(y<0)\) or \((y \sim 0\) and \(x<0)\) ):
1. Calculate the \(\mathrm{Y} \& \mathrm{M}\) approximation of \(Y_{\nu}(-z)\).
2. If \((y>0)\), use forward rotation, otherwise use backward rotation, to calculate the Bessel function \(Y_{v}(z)\), where the "forward" and "backward" rotation transformations are defined as:
\[
\begin{aligned}
& \text { forward: } Y_{v}(z)=i^{-2 v} Y_{v}(-z)+2 i \cos (v \pi) J_{v}(-z) \\
& \text { backward: } Y_{v}(z)=i^{2 v} Y_{v}(-z)-2 i \cos (v \pi) J_{v}(-z)
\end{aligned}
\]

These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.36:
\(Y_{\nu}\left(z e^{m \pi i}\right)=e^{-m v \pi i} Y_{\nu}(z)+2 i \sin (m v \pi) \cot (\nu \pi) J_{\nu}(z)\), where \(m=1\) represents forward transformation and \(m=-1\) represents backward transformation. These specified rotations insure that the continuous rotation transformation \(Y_{\nu}(-z) \rightarrow Y_{\nu}(z)\) does not cross the negative \(x\) axis, so no discontinuity is encountered.

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of C2YS / DC2Y. The reference is:

CALL C2YS (XNU, Z, N, CBS, FK)
The additional argument is:
FK - complex work vector of length N .
2. Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 1 & One of the continued fractions failed. \\
4 & 2 & Only the first several entries in CBS are valid.
\end{tabular}

\section*{Example}

In this example, \(Y_{0.3+k-1}(1.2+0.5 i), k=1, \ldots, 4\) is computed and printed.
```

USE CBYS_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=4)
INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
XNU = 0.3
Z = (1.2, 0.5)

```
!
```

 CALL CBYS (XNU, Z, N, CBS)
 !
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
CONTINUE
99999 FORMAT (' Y sub ', F6.3, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```

\section*{Output}
\begin{tabular}{lllll} 
Y sub \(0.300((1.200\), & \(0.500))\) & \(=(\) & -0.013, & \(0.380)\) \\
\(Y\) sub \(1.300((1.200\), & \(0.500))\) & \(=(\) & -0.716, & \(0.338)\) \\
\(Y\) sub \(2.300((1.200\), & \(0.500))\) & \(=(\) & -1.048, & \(0.795)\) \\
\(Y\) sub \(3.300((1.200\), & \(0.500))\) & \(=(\) & -1.625, & \(3.684)\)
\end{tabular}

\section*{CBIS}

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

\section*{Required Arguments}

XNU - Real argument which is the lowest order desired. (Input)
XNU must be greater than \(-1 / 2\).
\(Z\) - Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
CBS - Vector of length \(N\) containing the values of the function through the series. (Output)
\(\operatorname{CBS}(I)\) contains the value of the Bessel function of order \(\mathrm{XNU}+\mathrm{I}-1\) at Z for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL CBIS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBIS and D_CBIS.

\section*{FORTRAN 77 Interface}

Single: CALL CBIS (XNU, Z, N, CBS)
Double: The double precision name is DCBIS.

\section*{Description}

The modified Bessel function \(I_{v}(z)\) is defined to be
\[
I_{v}(z)=e^{-v \pi i / 2} J_{v}\left(z e^{\pi i / 2}\right) \text { for }-\pi<\arg z \leq \frac{\pi}{2}
\]
where the Bessel function \(J_{v}(z)\) is defined in BSJS.
This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).
For large arguments, \(z\), Temme's (1975) algorithm is used to find \(I_{v}(z)\). The \(I_{v}(z)\) values are recurred upward (if this is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate. For moderate and small arguments, Miller's method is used.

\section*{Comments}
\begin{tabular}{cll} 
Informational Errors & \\
Type & Code & Description \\
3 & 1 & One of the continued fractions failed. \\
4 & 2 & Only the first several entries in CBS are valid.
\end{tabular}

\section*{Example}

In this example, \(I_{0.3+v-1}(1.2+0.5 i), v=1, \ldots, 4\) is computed and printed.
```

 USE CBIS_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER N
PARAMETER (N=4)
INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
XNU = 0.3
Z = (1.2, 0.5)
CALL CBIS (XNU, Z, N, CBS)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
1 0 ~ C O N T I N U E ~
99999 FORMAT (' I sub ', F6.3, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```

\section*{Output}
\begin{tabular}{lllll} 
I sub \(0.300((1.200,0.500))\) & \(=(\) & 1.163, & \(0.396)\) \\
I sub \(1.300((1.200,0.500))\) & \(=(\) & 0.447, & \(0.332)\) \\
I sub \(2.300((1.200,0.500))\) & \(=(\) & 0.082, & \(0.127)\) \\
I sub \(3.300((1.200,0.500))\) & \(=(\) & 0.006, & \(0.029)\)
\end{tabular}

\section*{CBKS}

Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.

\section*{Required Arguments}
\(X N U\) - Real argument which is the lowest order desired. (Input)
XNU must be greater than \(-1 / 2\).
\(\mathbf{Z}\) - Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
\(N\) - Number of elements in the sequence. (Input)
\(C B S\) - Vector of length \(N\) containing the values of the function through the series. (Output)
\(\operatorname{CBS}(I)\) contains the value of the Bessel function of order \(\mathrm{XNU}+\mathrm{I}-1\) at Z for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL CBKS (XNU, \(\mathrm{z}, \mathrm{N}, \mathrm{CBS}\) )
Specific: The specific interface names are S_CBKS and D_CBKS.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) CALL CBKS (XNU, Z, N, CBS)
Double: The double precision name is DCBKS.

\section*{Description}

The Bessel function \(K_{v}(z)\) is defined to be
\[
K_{v}(z)=\frac{\pi}{2} e^{v \pi i / 2}\left[i J_{v}\left(z e^{\pi i / 2}\right)-Y_{v}\left(z e^{\pi i / 2}\right)\right] \quad \text { for }-\pi<\arg z \leq \frac{\pi}{2}
\]
where the Bessel function \(J_{v}(z)\) is defined in CBJS and \(Y_{v}(z)\) is defined in CBYS.
This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).
For moderate or large arguments, \(z\), Temme's (1975) algorithm is used to find \(K_{v}(z)\). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate. For small \(z\), a Neumann series is used to compute \(K_{v}(z)\). Upward recurrence of the \(K_{v}(z)\) is always stable.

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of C2KS / DC2KS. The reference is

CALL C2KS (XNU, Z, N, CBS, FK)
The additional argument is
FK - Complex work vector of length N .
2. Informational errors

\section*{Type Code Description}
\begin{tabular}{lll}
3 & 1 & One of the continued fractions failed. \\
4 & 2 & Only the first several entries in CBS are valid.
\end{tabular}

\section*{Example}

In this example, \(K_{0.3+v-1}(1.2+0.5 i), v=1, \ldots, 4\) is computed and printed.
```

USE UMACH_INT
USE CBKS_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=4)
INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
XNU = 0.3
Z = (1.2, 0.5)
CALL CBKS (XNU, Z, N, CBS)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
CONTINUE
99999 FORMAT (' K sub ', F6.3, ' ((', F6.3, ',', F6.3, \&
')) = (', F9.3, ',', F9.3, ')')
END

```
\(!\)

\section*{Output}
\begin{tabular}{lllll} 
K sub \(0.300((1.200,0.500))\) & \(=(\) & 0.246, & \(-0.200)\) \\
K sub \(1.300((1.200,0.500))\) & \(=(\) & 0.336, & \(-0.362)\) \\
K sub \(2.300((1.200,0.500))\) & \(=(\) & 0.587, & \(-1.126)\) \\
K sub \(3.300((1.200\), & \(0.500))\) & \(=(\) & 0.719, & \(-4.839)\)
\end{tabular}

\section*{Chapter 7: Kelvin Functions}

\section*{Routines}
Evaluates \(\operatorname{ber}_{0}(x)\) ..... 200
Evaluates bei \(_{0}(x)\) ..... 202
Evaluates \(\operatorname{ker}_{0}(x)\) ..... 204
Evaluates \(\operatorname{kei}_{0}(x)\) ..... 206
Evaluates \(\operatorname{ber}^{\prime}{ }_{0}(x)\) ..... 208
Evaluates bei \(_{0}(x)\) ..... BEIPO ..... 210
Evaluates \(\operatorname{ker}^{\prime}{ }_{0}(x)\) AKERPO ..... 212
Evaluates \(\mathrm{kei}^{\prime}{ }_{0}(x)\) AKEIPO ..... 214
Evaluates \(\operatorname{ber}_{1}(x)\) ..... BER1 ..... 216
Evaluates bei \(_{1}(x)\) ..... 218
Evaluates \(\operatorname{ker}_{1}(x)\) ..... AKER1 ..... 220
Evaluates \(\operatorname{kei}_{1}(x)\) .AKEI1 ..... 222

\section*{Usage Notes}

The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin functions are related to the Bessel functions by the following relations.
\[
\begin{gathered}
\operatorname{ber}_{v} x+i \operatorname{bei}_{\nu} x=J_{v}\left(x e^{3 \pi i / 4}\right) \\
\operatorname{ker}_{v} x+i \operatorname{kei}_{\rightharpoonup} x=e^{-v \pi i / 2} K_{v}\left(x e^{\pi i / 4}\right)
\end{gathered}
\]

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the following:
\[
\begin{aligned}
& \sqrt{2} \operatorname{ber}_{0}{ }_{0} x=\operatorname{ber}_{1} x+\operatorname{bei}_{1} x \\
& \sqrt{2} \operatorname{bei}^{\prime}{ }_{0} x=-\operatorname{ber}_{1} x+\operatorname{bei}_{1} x \\
& \sqrt{2} \operatorname{ker}^{\prime}{ }_{0} x=\operatorname{ker}_{1} x+\operatorname{kei}_{1} x \\
& \sqrt{2} \operatorname{kei}_{0}{ }_{0} x=-\operatorname{ker}_{1} x+\operatorname{kei}_{1} x
\end{aligned}
\]

Plots of \(\operatorname{ber}_{n}(x), \operatorname{bei}_{n}(x), \operatorname{ker}_{n}(x)\) and \(\operatorname{kei}_{n}(x)\) for \(n=0,1\) follow:


Figure 7.I - Plot of \(\operatorname{ber}_{n}(x)\) and \(\operatorname{bei}_{n}(x)\)


Figure 7.2 - Plot of \(\operatorname{ker}_{n}(x)\) and \(\operatorname{kei}_{n}(x)\)

\section*{BER0}

This function evaluates the Kelvin function of the first kind, ber, of order zero.

\section*{Function Return Value}

BERO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) \(A B S(X)\) must be less than 119 .

\section*{FORTRAN 90 Interface}

Generic: BER0 (x)
Specific: The specific interface names are S_BER0 and D_BER0.

\section*{FORTRAN 77 Interface}
Single: \(\quad\) BER0 (X)

Double: The double precision name is DBER0.

\section*{Description}

The Kelvin function \(\operatorname{ber}_{0}(x)\) is defined to be \(\mathfrak{R} J_{0}\left(x e^{3 \pi i / 4}\right)\). The Bessel function \(J_{0}(x)\) is defined in BSJO. Function BERO is based on the work of Burgoyne (1963).

\section*{Example}

In this example, ber \(_{0}(0.4)\) is computed and printed.

> USE BERO_INT

USE UMACH_INT
IMPLICIT NONE
    INTEGER NOUT
    REAL VALUE, x
```

! Compute

```
    \(x=0.4\)
    VALUE \(=\) BERO (X)
! Print the results
    CALL UMACH (2, NOUT)
    WRITE (NOUT, 99999) X, VALUE
99999 FORMAT (' BERO(', F6.3, ') = ', F6.3)
    END

Output
\(\operatorname{BERO}(0.400)=1.000\)

\section*{BEIO}

This function evaluates the Kelvin function of the first kind, bei, of order zero.

\section*{Function Return Value}

BEIO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) \(\mathrm{ABS}(\mathrm{X})\) must be less than 119 .

\section*{FORTRAN 90 Interface}

Generic: BEI0 (x)
Specific: The specific interface names are S_BEIO and D_BEIO.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BEIO (X) \\
Double: & The double precision name is DBEIO.
\end{tabular}

\section*{Description}

The Kelvin function bei \(_{0}(x)\) is defined to be \(\mathfrak{J} J_{0}\left(x e^{3 \pi i / 4}\right)\). The Bessel function \(J_{0}(x)\) is defined in BSJ0. Function BEIO is based on the work of Burgoyne (1963).

In BEI0, \(x\) must be less than 119 .

\section*{Example}

In this example, \(\operatorname{bei}_{0}(0.4)\) is computed and printed.
```

USE BEIO_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, X
X= 0.4
VALUE = BEIO(X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
```

99999 FORMAT (' BEIO(', F6.3, ') = ', F6.3)

```
    END

Output
\(\operatorname{BEIO}(0.400)=0.040\)

\section*{AKERO}

This function evaluates the Kelvin function of the second kind, ker, of order zero.

\section*{Function Return Value}

AKER0 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: AKER0 (x)
Specific: The specific interface names are S_AKER0 and D_AKER0.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & AKER 0 (x) \\
Double: & The double precision name is DKER0.
\end{tabular}

\section*{Description}

The modified Kelvin function \(\operatorname{ker}_{0}(x)\) is defined to be \(\Re K_{0}\left(x e^{\pi i / 4}\right)\). The Bessel function \(K_{0}(x)\) is defined in BSKO. Function AKERO is based on the work of Burgoyne (1963). If \(x<0\), then NaN (not a number) is returned. If \(x \geq 119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{ker}_{0}(0.4)\) is computed and printed.
```

 USE AKERO_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
X=0.4
VALUE = AKER0 (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AKER0(', F6.3, ') = ', F6.3)
END

```
!

Output
\(\operatorname{AKERO}(0.400)=1.063\)

\section*{AKEIO}

This function evaluates the Kelvin function of the second kind, kei, of order zero.

\section*{Function Return Value}

AKEIO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

\section*{FORTRAN 90 Interface}

Generic: AKEI0 (x)
Specific: The specific interface names are S_AKEI0 and D_AKEIO.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & AKEIO (x) \\
Double: & The double precision name is DKEIO.
\end{tabular}

\section*{Description}

The modified Kelvin function \(\operatorname{kei}_{0}(x)\) is defined to be \(\mathfrak{J} K_{0}\left(x e^{\pi i / 4}\right)\). The Bessel function \(K_{0}(x)\) is defined in BSK0. Function AKEIO is based on the work of Burgoyne (1963).

In AKEI \(0, x\) must satisfy \(0 \leq x<119\). If \(x<0\), then NaN (not a number) is returned. If \(x \geq 119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{kei}_{0}(0.4)\) is computed and printed.
```

USE AKEIO_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
REAL VALUE, X
X = 0.4
VALUE = AKEIO (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
```

99999 FORMAT (' AKEIO(', F6.3, ') = ', F6.3)
END

```

Output

AKEIO ( 0.400\()=-0.704\)

\section*{BERPO}

This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

\section*{Function Return Value \\ BERPO - Function value. (Output)}

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BERP0 \((\mathrm{X})\) \\
Specific: & The specific interface names are S_BERP0 and D_BERP0.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BERP0 \((x)\) \\
Double: & The double precision name is DBERP0.
\end{tabular}

\section*{Description}

The function \(\mathrm{ber}^{\prime}{ }_{0}(x)\) is defined to be
\[
\frac{d}{d x} \operatorname{ber}_{0}(x)
\]
where \(\operatorname{ber}_{0}(x)\) is a Kelvin function, see BER0. Function BERP0 is based on the work of Burgoyne (1963).
If \(|\mathrm{x}|>119\), then NaN (not a number) is returned.

\section*{Example}

In this example, \(\operatorname{ber}^{\prime}{ }_{0}(0.6)\) is computed and printed.
```

USE BERPO_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X=0.6
VALUE = BERPO(X)
! Print the results
CALL UMACH (2, NOUT)

```
\(!\)

WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BERP0(', F6.3, ') = ', F6.3) END

Output
\(\operatorname{BERPO}(0.600)=-0.013\)

\section*{BEIPO}

This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

\section*{Function Return Value}

BEIP0 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BEIP0 (x) \\
Specific: & The specific interface names are S_BEIP0 and D_BEIP0.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BEIP0 (x) \\
Double: & The double precision name is DBEIP0.
\end{tabular}

\section*{Description}

The function bei \(^{\prime}{ }_{0}(x)\) is defined to be
\[
\frac{d}{d x} \operatorname{bei}_{0}(x)
\]
where \(\operatorname{bei}_{0}(x)\) is a Kelvin function, see BEIO. Function BEIP0 is based on the work of Burgoyne (1963).
If \(|x|>119\), then NaN (not a number) is returned.

\section*{Example}

In this example, bei \(^{\prime}{ }_{0}(0.6)\) is computed and printed.
```

USE BEIPO_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X=0.6
VALUE = BEIPO(X)
! Print the results
CALL UMACH (2, NOUT)

```
\(!\)

WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BEIPO(', F6.3, ') = ', F6.3) END

Output
\(\operatorname{BEIPO}(0.600)=0.300\)

\section*{AKERPO}

This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

\section*{Function Return Value}

AKERPO - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: AKERP0 (x)
Specific: The specific interface names are S_AKERP0 and D_AKERPO.

\section*{FORTRAN 77 Interface}

Single: AKERP0 (x)
Double: The double precision name is DKERPO.

\section*{Description}

The function \(\operatorname{ker}^{\prime}{ }_{0}(x)\) is defined to be
\[
\frac{d}{d x} \operatorname{ker}_{0}(x)
\]
where \(\operatorname{ker}_{0}(x)\) is a Kelvin function, see AKERO. Function AKERP0 is based on the work of Burgoyne (1963). If \(x<0\), then NaN (not a number) is returned. If \(x>119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{ker}^{\prime}{ }_{0}(0.6)\) is computed and printed.
```

 USE AKERPO_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X, AKERPO
X = 0.6
VALUE = AKERPO(X)

```
```

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AKERP0(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{AKERPO}(0.600)=-1.457\)

\section*{AKEIPO}

This function evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

\section*{Function Return Value}

AKEIP0 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: AKEIP0 (x)
Specific: The specific interface names are S_AKEIP0 and D_AKEIP0.

\section*{FORTRAN 77 Interface}

Single: AKEIP0 (x)
Double: The double precision name is DKEIP0.

\section*{Description}

The function \(\operatorname{kei}^{\prime}{ }_{0}(x)\) is defined to be
\[
\frac{d}{d x} \operatorname{kei}_{0}(x)
\]
where \(\operatorname{kei}_{0}(x)\) is a Kelvin function, see AKEIO. Function AKEIP0 is based on the work of Burgoyne (1963).
If \(x<0\), then NaN (not a number) is returned. If \(x>119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{kei}^{\prime}{ }_{0}(0.6)\) is computed and printed.
```

USE AKEIPO_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X, AKEIP0
Compute
X = 0.6
VALUE = AKEIPO(X)

```
!
```

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AKEIPO(', F6.3, ') = ', F6.3)
END

```

\section*{Output}

AKEIPO \((0.600)=0.348\)

\section*{BER1}

This function evaluates the Kelvin function of the first kind, ber, of order one.

\section*{Function Return Value}

BER1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BER1 (X) \\
Specific: & The specific interface names are S_BER1 and D_BER1.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BER1 (X) \\
Double: & The double precision name is DBER1.
\end{tabular}

\section*{Description}

The Kelvin function \(\operatorname{ber}_{1}(x)\) is defined to be \(\mathfrak{R} J_{1}\left(x e^{3 \pi i / 4}\right)\). The Bessel function \(J_{1}(x)\) is defined in BSJ1. Function BER1 is based on the work of Burgoyne (1963).

If \(|x|>119\), then NaN (not a number) is returned.

\section*{Example}

In this example, \(\operatorname{ber}_{1}(0.4)\) is computed and printed.
```

 USE BER1_INT
 USE UMACH_INT
 IMPLICIT NONE
 Declare variables
 INTEGER NOUT
 REAL VALUE, X
 X = 0.4
 VALUE = BER1(X)
 ! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BER1(', F6.3, ') = ', F6.3)
END

```

Output

BER1 ( 0.400\()=-0.144\)

\section*{BEI1}

This function evaluates the Kelvin function of the first kind, bei, of order one.

\section*{Function Return Value}

BEI1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BEI1 (X) \\
Specific: & The specific interface names are S_BEI1 and D_BEI1.
\end{tabular}

\section*{FORTRAN 77 Interface}
Single: BEI1 (x)

Double: \(\quad\) The double precision name is DBEI1.

\section*{Description}

The Kelvin function bei \(_{1}(x)\) is defined to be \(\mathfrak{J} J_{1}\left(x e^{3 \pi i / 4}\right)\). The Bessel function \(J_{1}(x)\) is defined in BSJ1. Function BEII is based on the work of Burgoyne (1963).

If \(|x|>119\), then NaN (not a number) is returned.

\section*{Example}

In this example, bei \(_{1}(0.4)\) is computed and printed.
```

 USE BEI1_INT
 USE UMACH_INT
 IMPLICIT NONE
 REAL VALUE, X
 X = 0.4
 VALUE = BEI1(X)
 ! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BEI1(', F6.3, ') = ', F6.3)
END

```

Output
\(\operatorname{BEI1}(0.400)=0.139\)

\section*{AKER1}

This function evaluates the Kelvin function of the second kind, ker, of order one.

\section*{Function Return Value}

AKER1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: AKER1 (X)
Specific: The specific interface names are S_AKER1 and D_AKER1.

\section*{FORTRAN 77 Interface}
Single: AKER1 (x)

Double: \(\quad\) The double precision name is DKER1.

\section*{Description}

The modified Kelvin function \(\operatorname{ker}_{1}(x)\) is defined to be \(e^{-\pi i / 2} \mathfrak{R} K_{1}\left(x e^{\pi i / 4}\right)\). The Bessel function \(K_{1}(x)\) is defined in BSK1. Function AKER1 is based on the work of Burgoyne (1963).

If \(x<0\), then NaN (not a number) is returned. If \(x \geq 119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{ker}_{1}(0.4)\) is computed and printed.
```

USE AKER1_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X = 0.4
VALUE = AKER1 (X)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
\(!\)
```

99999 FORMAT (' AKER1(', F6.3, ') = ', F6.3)
END

```

Output

AKERI \((0.400)=-1.882\)

\section*{AKEI1}

This function evaluates the Kelvin function of the second kind, kei, of order one.

\section*{Function Return Value}

AKEI1 - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: AKEI1 (x)
Specific: The specific interface names are S_AKEI1 and D_AKEI1.

\section*{FORTRAN 77 Interface}
Single: AKEI1 (x)

Double: \(\quad\) The double precision name is DKEI1.

\section*{Description}

The modified Kelvin function \(\operatorname{kei}_{1}(x)\) is defined to be \(e^{-\pi / 2} \mathfrak{J} K_{1}\left(x e^{\pi i / 4}\right)\). The Bessel function \(K_{1}(x)\) is defined in BSK1. Function AKEI1 is based on the work of Burgoyne (1963).

If \(x<0\), then NaN (not a number) is returned. If \(x \geq 119\), then zero is returned.

\section*{Example}

In this example, \(\operatorname{kei}_{1}(0.4)\) is computed and printed.
```

 USE UMACH_INT
 USE AKEI1_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
 X=0.4
 VALUE = AKEI1(X)
 CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
!
```

99999 FORMAT (' AKEI1(', F6.3, ') = ', F6.3)
END

```

Output

AKEI1 \((0.400)=-1.444\)

\section*{Chapter 8: Airy Functions}

\section*{Routines}
8.1 Real Airy Functions
Evaluates \(\mathrm{Ai}(x)\) ..... 226
Evaluates \(\mathrm{Bi}(x)\) ..... 228
Evaluates \(\mathrm{Ai}^{\prime}(x)\) ..... 230
Evaluates \(\mathrm{Bi}^{\prime}(x)\) ..... 232
Evaluates exponentially scaled Ai(x) ..... 234
Evaluates exponentially scaled \(\operatorname{Bi}(x)\) ..... 236
Evaluates exponentially scaled \(\mathrm{Ai}^{\prime}(\mathrm{x})\) ..... 238
Evaluates exponentially scaled \(\mathrm{Bi}^{\prime}(\mathrm{x})\) ..... BIDE ..... 240
8.2 Complex Airy Functions
Evaluates Ai(z) ..... 242
Evaluates \(\mathrm{Bi}(\mathrm{z})\) ..... CBI ..... 244
Evaluates \(\mathrm{Ai}^{\prime}(z)\) ..... 246
Evaluates \(\mathrm{Bi}^{\prime}(z)\) CBID ..... 248

This function evaluates the Airy function.

\section*{Function Return Value}

AI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Airy function is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: AI (x)
Specific: The specific interface names are S_AI and D_AI.

\section*{FORTRAN 77 Interface}

Single: AI (x)
Double: \(\quad\) The double precision name is DAI.

\section*{Description}

The Airy function \(\operatorname{Ai}(x)\) is defined to be
\[
\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(x t+\frac{1}{3} t^{3}\right) d t=\sqrt{\frac{x}{3 \pi^{2}}} K_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right)
\]

The Bessel function \(K(x)\) is defined in BSKS.
If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision. Finally, \(x\) should be less than \(x_{\text {max }}\) so the answer does not underflow. Very approximately, \(x_{\max }=\{-1.5 \ln s\}\), where \(s=\) AMACH (1) , the smallest representable positive number. If underflows are a problem for large \(x\), then the exponentially scaled routine AIE should be used.

\section*{Comments}

Informational Error

\section*{Type Code}

2

\section*{Description}

The function underflows because x is greater than XMAX, where XMAX \(=(-3 / 2 \ln (\operatorname{AMACH}(1)))^{2 / 3}\).

\section*{Example}

In this example, \(\mathrm{Ai}(-4.9)\) is computed and printed.


\section*{Output}
```

AI(-4.900)=0.375

```

\section*{BI}

This function evaluates the Airy function of the second kind.

\section*{Function Return Value}

BI - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: BI (x)
Specific: The specific interface names are S_BI and D_BI.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & BI \((\mathrm{x})\) \\
Double: & The double precision name is DBI.
\end{tabular}

\section*{Description}

The Airy function of the second kind \(\operatorname{Bi}(x)\) is defined to be
\[
\operatorname{Bi}(x)=\frac{1}{\pi} \int_{0}^{\infty} \exp \left(x t-\frac{1}{3} t^{3}\right) d t+\frac{1}{\pi} \int_{0}^{\infty} \sin \left(x t+\frac{1}{3} t^{3}\right) d t
\]

It can also be expressed in terms of modified Bessel functions of the first kind, \(I_{v}(x)\), and Bessel functions of the first kind, \(J_{v}(x)\) (see BSIS and BSJS):
\[
\operatorname{Bi}(x)=\sqrt{\frac{x}{3}}\left[I_{-1 / 3}\left(\frac{2}{3} x^{3 / 2}\right)+I_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right)\right] \text { for } x>0
\]
and
\[
\operatorname{Bi}(x)=\sqrt{-\frac{x}{3}}\left[J_{-1 / 3}\left(\frac{2}{3}|x|^{3 / 2}\right)-J_{1 / 3}\left(\frac{2}{3}|x|^{3 / 2}\right)\right] \text { for } x<0
\]

Let \(\varepsilon=\operatorname{AMACH}(4)\), the machine precision. If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), the answer will be less accurate than half precision. In addition, \(x\) should not be so large that \(\exp \left[(2 / 3) x^{3 / 2}\right]\) overflows. If overflows are a problem, consider using the exponentially scaled form of the Airy function of the second kind, BIE, instead.

\section*{Example}

In this example, \(\mathrm{Bi}(-4.9)\) is computed and printed.


\section*{Output}
\(B I(-4.900)=-0.058\)

This function evaluates the derivative of the Airy function.

\section*{Function Return Value}

AID - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: AID (x)
Specific: The specific interface names are S_AID and D_AID.

\section*{FORTRAN 77 Interface}
Single: AID (X)

Double: \(\quad\) The double precision name is DAID.

\section*{Description}

The function \(\mathrm{Ai}^{\prime}(x)\) is defined to be the derivative of the Airy function, \(\mathrm{Ai}(x)\) (see AI).
If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision. Finally, \(x\) should be less than \(x_{\max }\) so that the answer does not underflow. Very approximately, \(x_{\max }=\{-1.5 \ln s\}\), where \(s=\operatorname{AMACH}(1)\), the smallest representable positive number. If underflows are a problem for large \(x\), then the exponentially scaled routine AIDE should be used.

\section*{Comments}

Informational Error
\begin{tabular}{lll} 
Type & Code & Description \\
2 & 1 & The function underflows because x is greater than XMAX , where \\
& & \(X M A X=-3 / 2 \ln (\operatorname{AMACH}(1))\).
\end{tabular}

\section*{Example}

In this example, \(\operatorname{Ai}^{\prime}(-4.9)\) is computed and printed.
```

USE AID_INT
USE UMACH_INT

```


\section*{Output}
```

AID(-4.900) = 0.147

```

\section*{BID}

This function evaluates the derivative of the Airy function of the second kind.

\section*{Function Return Value}

BID - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: BID (x)
Specific: The specific interface names are S_BID and D_BID.

\section*{FORTRAN 77 Interface}
Single: BID (X)

Double: \(\quad\) The double precision name is DBID.

\section*{Description}

The function \(\operatorname{Bi}^{\prime}(x)\) is defined to be the derivative of the Airy function of the second \(\operatorname{kind}, \operatorname{Bi}(x)\) (see BI).
If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), the answer will be less accurate than half precision. In addition, \(x\) should not be so large that \(\exp \left[(2 / 3) x^{3 / 2}\right]\) overflows. If overflows are a problem, consider using BIDE instead. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\mathrm{Bi}^{\prime}(-4.9)\) is computed and printed.
```

USE BID_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL VALUE, X
X= =-4.9
VALUE = BID(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

```
\(!\)
```

99999 FORMAT (' BID(', F6.3, ') = ', F6.3)

```
    END

Output
\(\operatorname{BID}(-4.900)=0.827\)

\section*{AIE}

This function evaluates the exponentially scaled Airy function.

\section*{Function Return Value}

AIE - Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy function, \(e^{\zeta} \mathrm{Ai}(\mathrm{x})\), for positive arguments where
\[
\zeta=\frac{2}{3} X^{3 / 2}
\]

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: AIE (X)
Specific: \(\quad\) The specific interface names are S_AIE and D_AIE.

\section*{FORTRAN 77 Interface}
Single: AIE (X)

Double: \(\quad\) The double precision name is DAIE.

\section*{Description}

The exponentially scaled Airy function is defined to be
\[
\operatorname{AIE}(x)= \begin{cases}\operatorname{Ai}(x) & \text { if } x \leq 0 \\ e^{[2 / 3] x^{3 / 2}} \operatorname{Ai}(x) & \text { if } x>0\end{cases}
\]

If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), then the answer will be less accurate than half precision. Here, \(\varepsilon=\mathrm{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\operatorname{AIE}(0.49)\) is computed and printed.
```

USE AIE_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X=0.49
VALUE = AIE(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AIE(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{AIE}(0.490)=0.294\)

\section*{BIE}

This function evaluates the exponentially scaled Airy function of the second kind.

\section*{Function Return Value}

BIE - Function value. (Output)
The Airy function of the second kind for negative arguments and the exponentially scaled Airy function of the second kind, \(e^{\zeta} \operatorname{Bi}(\mathrm{X})\), for positive arguments where
\[
\zeta=-\frac{2}{3} X^{3 / 2}
\]

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: BIE (x)
Specific: The specific interface names are S_BIE and D_BIE.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) BIE (x)
Double: \(\quad\) The double precision name is DBIE.

\section*{Description}

The exponentially scaled Airy function of the second kind is defined to be
\[
\operatorname{BIE}(x)= \begin{cases}\operatorname{Bi}(x) & \text { if } x \leq 0 \\ e^{-[2 / 3] x^{3 / 2}} \operatorname{Bi}(x) & \text { if } x>0\end{cases}
\]

If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), then the answer will be less accurate than half precision. Here, \(\varepsilon=\mathrm{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\operatorname{BIE}(0.49)\) is computed and printed.
```

USE BIE_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X=0.49
VALUE = BIE(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BIE(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{BIE}(0.490)=0.675\)

\section*{AIDE}

This function evaluates the exponentially scaled derivative of the Airy function.

\section*{Function Return Value}

AIDE - Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled derivative of the Airy function, \(e^{\zeta} \mathrm{Ai}^{\prime}(\mathrm{X})\), for positive arguments where
\[
\zeta=-\frac{2}{3} X^{3 / 2}
\]

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: AIDE (x)
Specific: The specific interface names are S_AIDE and D_AIDE.

\section*{FORTRAN 77 Interface}
Single: AIDE (x)

Double: \(\quad\) The double precision name is DAIDE.

\section*{Description}

The exponentially scaled derivative of the Airy function is defined to be
\[
\operatorname{AIDE}(x)= \begin{cases}\mathrm{Ai}^{\prime}(x) & \text { if } x \leq 0 \\ e^{[2 / 3] x^{3 / 2}} \mathrm{Ai}^{\prime}(x) & \text { if } x>0\end{cases}
\]

If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), then the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\operatorname{AIDE}(0.49)\) is computed and printed.
```

USE AIDE_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X=0.49
VALUE = AIDE (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AIDE(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{AIDE}(0.490)=-0.284\)

\section*{BIDE}

This function evaluates the exponentially scaled derivative of the Airy function of the second kind.

\section*{Function Return Value}

BIDE - Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and the exponentially scaled derivative of the Airy function of the second kind, \(e^{\zeta_{\mathrm{Bi}^{\prime}}(\mathrm{X}) \text {, for positive arguments where }}\)
\[
\zeta=-\frac{2}{3} X^{3 / 2}
\]

\section*{Required Arguments}
\(X\) - Argument for which the Airy function value is desired. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & BIDE \((X)\) \\
Specific: & The specific interface names are S_BIDE and D_BIDE.
\end{tabular}

\section*{FORTRAN 77 Interface}

Single: BIDE (X)
Double: The double precision name is DBIDE.

\section*{Description}

The exponentially scaled derivative of the Airy function of the second kind is defined to be
\[
\operatorname{BIDE}(x)= \begin{cases}\operatorname{Bi}^{\prime}(x) & \text { if } x \leq 0 \\ e^{-[2 / 3] x^{3 / 2}} \operatorname{Bi}^{\prime}(x) & \text { if } x>0\end{cases}
\]

If \(x<-1.31 \varepsilon^{-2 / 3}\), then the answer will have no precision. If \(x<-1.31 \varepsilon^{-1 / 3}\), then the answer will be less accurate than half precision. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

\section*{Example}

In this example, \(\operatorname{BIDE}(0.49)\) is computed and printed.
```

USE BIDE_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER NOUT
REAL VALUE, X
X = 0.49
VALUE = BIDE (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BIDE(', F6.3, ') = ', F6.3)
END

```

Output
\(\operatorname{BIDE}(0.490)=0.430\)

\section*{CAI}

This function evaluates the Airy function of the first kind for complex arguments.

\section*{Function Return Value}

CAI - Complex function value. (Output)

\section*{Required Arguments}
\(\mathbf{Z}\) - Complex argument for which the Airy function is desired. (Input)

\section*{Optional Arguments}

SCALING - Logical argument specifying whether or not the scaling function will be applied to the \(\operatorname{Ai}(z)\) function value. (Input)
Default: SCALING = .false.

\section*{FORTRAN 90 Interface}

Generic: CAI (z)
Specific: The specific interface names are C_CAI and Z_CAI.

\section*{Description}

The Airy function \(\operatorname{Ai}(z)\) is a solution of the differential equation
\[
\frac{d^{2} w}{d z^{2}}=z w
\]

The mathematical development and algorithm, 838, used here are found in the work by Fabijonas et al. Function CAI returns the complex values of \(\operatorname{Ai}(z)\).

An optional argument, SCALING, defines a scaling function \(s(z)\) that multiplies the results. This scaling function is
\begin{tabular}{|c|c|}
\hline Scaling & Action \\
\hline .false. & \(s(z)=1\) \\
\hline .true. & \(s(z)=e^{[2 / 3] z^{3 / 2}}\) \\
\hline
\end{tabular}

\section*{Comments}

Informational Errors
Type Code
2
1

\section*{Description}
The real part of \((2 / 3) \times z^{(3 / 2)}\) was too large in the region where the function is exponentially small; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.
\(2 \quad 2\)
The real part of \((2 / 3) \times z^{(3 / 2)}\) was too large in the region where the function is exponentially large; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.

\section*{Example}

In this example, \(\operatorname{Ai}(0.49,0.49)\) is computed and printed.
```

 USE CAI_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX Y, Z, W
! Compute
W = CMPLX(0.49,0.49)
Y = CAI (W)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
!
99998 FORMAT(12x,"CAI(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

```

\section*{Output}
```

CAI(0.490, 0.490)=(0.219, -0.113)

```

\section*{CBI}

This function evaluates the Airy function of the second kind for complex arguments.

\section*{Function Return Value}

CBI - Complex function value. (Output)

\section*{Required Arguments}
\(\mathbf{Z}\) - Complex argument for which the Airy function value is desired. (Input)

\section*{Optional Arguments}

SCALING - Logical argument specifying whether or not the scaling function will be applied to the \(\operatorname{Ai}(z)\) function value used to compute \(\operatorname{Bi}(z)\). (Input) Default: SCALING = .false.

\section*{FORTRAN 90 Interface}

Generic: CBI (Z)
Specific: The specific interface names are C_CBI and Z_CBI.

\section*{Description}

The Airy function of the second kind \(\operatorname{Bi}(z)\) is expressed using the connection formula
\[
\operatorname{Bi}(z)=e^{-\pi i / 6} \operatorname{Ai}\left(z e^{-2 \pi i / 3}\right)+e^{\pi i / 6} \operatorname{Ai}\left(z e^{2 \pi i / 3}\right)
\]
using function CAI for \(\operatorname{Ai}(z)\).
An optional argument, SCALING, defines a scaling function \(s(z)\) that multiplies the results. This scaling function is
\begin{tabular}{|c|c|}
\hline Scaling & Action \\
\hline .false. & \(s(z)=1\) \\
\hline .true. & \(s(z)=e^{[2 / 3] z^{3 / 2}}\) \\
\hline
\end{tabular}

The values for \(\operatorname{Bi}(z)\) are returned with the scaling for \(\operatorname{Ai}(z)\).

\section*{Comments}

Informational Errors
Type Code
2
1

\section*{Description}
The real part of \((2 / 3) \times \mathrm{z}^{(3 / 2)}\) was too large in the region where the function is exponentially small; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.
\(2 \quad 2\)
The real part of \((2 / 3) \times \mathrm{z}^{(3 / 2)}\) was too large in the region where the function is exponentially large; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.

\section*{Example}

In this example, \(\operatorname{Bi}(0.49,0.49)\) is computed and printed.
```

 USE CBI_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX Y, Z, W
!
W = CMPLX(0.49,0.49)
Y = CBI (W)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
!
99998 FORMAT(12x,"CBI(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

```

\section*{Output}
```

CBI(0.490, 0.490)=(0.802,0.243)

```

\section*{CAID}

This function evaluates the derivative of the Airy function of the first kind for complex arguments.

\section*{Function Return Value}

CAID - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the Airy function value is desired. (Input)

\section*{Optional Arguments}

SCALING - Logical argument specifying whether or not the scaling function will be applied to the \(\mathrm{Ai}^{\prime}(z)\) function value. (Input)
Default: SCALING = .false.

\section*{FORTRAN 90 Interface}

Generic: C_CAID (z)
Specific: The specific interface names are C_CAID and z_CAID.

\section*{Description}

The function \(\operatorname{Ai}^{\prime}(z)\) is defined to be the derivative of the Airy function, \(\operatorname{Ai}(z)\) (see CAI).
An optional argument, SCALING, defines a scaling function \(s(z)\) that multiplies the results. This scaling function is
\begin{tabular}{|c|c|}
\hline Scaling & Action \\
\hline .false. & \(s(z)=1\) \\
\hline .true. & \(s(z)=e^{[2 / 3] z^{3 / 2}}\) \\
\hline
\end{tabular}

\section*{Comments}

Informational Errors

Type Code
21

2

\section*{Description}

The real part of \((2 / 3) \times z^{(3 / 2)}\) was too large in the region where the function is exponentially small; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.
The real part of \((2 / 3) \times \mathrm{z}^{(3 / 2)}\) was too large in the region where the function is exponentially large; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.

\section*{Example}

In this example, \(\mathrm{Ai}(0.49,0.49)\) and \(\mathrm{Ai}^{\prime}(0.49,0.49)\) are computed and printed.
```

 USE CAID_INT
 USE CAI_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX Y, Z, W, Z
!
W = CMPLX(0.49,0.49)
Y = CAI (W)
Z = CAID(W)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
WRITE (NOUT,99997) W, Z
!
99997 FORMAT(12x,"CAID(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
99998 FORMAT(12x,"CAI(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

```

\section*{Output}
```

CAI(0.490, 0.490) = (0.219, -0.113)
CAID (0.490, 0.490) = (-0.240, 0.064)

```

\section*{CBID}

This function evaluates the derivative of the Airy function of the second kind for complex arguments.

\section*{Function Return Value}

CBID - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the Airy function value is desired. (Input)

\section*{Optional Arguments}

SCALING - Logical argument specifying whether or not the scaling function will be applied to the \(\operatorname{Ai}^{\prime}(z)\) function value used to compute \(\operatorname{Bi}^{\prime}(z)\). (Input) Default: SCALING = .false.

\section*{FORTRAN 90 Interface}

Generic: CBID (Z)
Specific: The specific interface names are C_CBID and Z_CBID.

\section*{Description}

The function \(\operatorname{Bi}^{\prime}(z)\) is defined to be the derivative of the Airy function of the second kind, \(\operatorname{Bi}(z)\), (see CBI ), expressed using the connection formula
\[
\operatorname{Bi}^{\prime}(z)=e^{-5 \pi i / 6} \mathrm{Ai}^{\prime}\left(z e^{-2 \pi i / 3}\right)+e^{5 \pi i / 6} \mathrm{Ai}^{\prime}\left(z e^{2 \pi i / 3}\right)
\]
using function CAID for \(\mathrm{Ai}^{\prime}(z)\).
An optional argument, SCALING, defines a scaling function \(s(z)\) that multiplies the results. This scaling function is
\begin{tabular}{|l|c|}
\hline Scaling & Action \\
\hline .false. & \(s(z)=1\) \\
\hline .true. & \(s(z)=e^{[2 / 3] z^{3 / 2}}\) \\
\hline
\end{tabular}

The values for \(\mathrm{Bi}^{\prime}(z)\) are returned with the scaling for \(\mathrm{Ai}^{\prime}(z)\).

\section*{Comments}

Informational Errors
Type Code
2
1

\section*{Description}
The real part of \((2 / 3) \times \mathrm{z}^{(3 / 2)}\) was too large in the region where the function is exponentially small; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.
\(2 \quad 2\)
The real part of \((2 / 3) \times \mathrm{z}^{(3 / 2)}\) was too large in the region where the function is exponentially large; function values were set to zero to avoid underflow. Try supplying the optional argument SCALING.

\section*{Example}

In this example, \(\operatorname{Bi}^{\prime}(0.49,0.49)\) is computed and printed.
```

 USE CBID_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
COMPLEX Y, Z, W
!
W = CMPLX(0.49,0.49)
Y = CBID(W)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
!
99998 FORMAT(12x,"CBID(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

```

\section*{Output}
```

CBID(0.490, 0.490)=(0.411, 0.180)

```

\section*{Chapter 9: Elliptic Integrals}

\section*{Routines}
Evaluates the complete elliptic integral of the first kind, \(K(x) \ldots \ldots . \ldots\). . . . . . ELK ..... 255
Evaluates the complete elliptic integral of the second kind, \(E(x)\) ..... 257
Evaluates Carlson's elliptic integral of the first kind, \(R_{F}(x, y, z) \ldots \ldots \ldots \ldots\). . . . . . . ..... 259
Evaluates Carlson's elliptic integral of the second kind, \(R_{D}(x, y, z)\). ..... 261
Evaluates Carlson's elliptic integral of the third kind, \(R_{J}(x, y, z)\) ..... 263
Evaluates a special case of Carlson's elliptic integral, \(R_{C}(x, y, z)\) ..... 265

\section*{Usage Notes}

The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson (1979).
The complete elliptic integral of the first kind is
\[
K(m)=\int_{0}^{\pi / 2}\left(1-m \sin ^{2} \theta\right)^{-1 / 2} d \theta
\]
and the complete elliptic integral of the second kind is
\[
E(m)=\int_{0}^{\pi / 2}\left(1-m \sin ^{2} \theta\right)^{1 / 2} d \theta
\]

Instead of the parameter \(m\), the modular angle \(\alpha\) is sometimes used with \(m=\sin ^{2} \alpha\). Also used is the modulus \(k\) with \(k^{2}=m\).
\[
\begin{aligned}
E(k)= & \int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{1 / 2} d \theta \\
& =R_{F}\left(0,1-k^{2}, 1\right)-\frac{1}{3} k^{2} R_{D}\left(0,1-k^{2}, 1\right)
\end{aligned}
\]

\section*{Carlson Elliptic Integrals}

The Carlson elliptic integrals are defined by Carlson (1979) as follows:
\[
\begin{gathered}
R_{F}(x, y, z)=\frac{1}{2} \int_{0}^{\infty} \frac{d t}{[(t+x)(t+y)(t+z)]^{1 / 2}} \\
R_{C}(x, y)=\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)^{2}\right]^{1 / 2}} \\
R_{J}(x, y, z, \rho)=\frac{3}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)(t+z)(t+\rho)^{2}\right]^{1 / 2}} \\
R_{D}(x, y, z)=\frac{3}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)(t+z)^{3}\right]^{1 / 2}}
\end{gathered}
\]

The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows (these relations are from Carlson (1979)):
\[
\begin{aligned}
& F(\phi, k)=\int_{0}^{\phi}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} d \theta \\
& \quad=(\sin \phi) R_{F}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1\right)
\end{aligned}
\]
\[
E(\phi, k)=\int_{0}^{\phi}\left(1-k^{2} \sin ^{2} \theta\right)^{1 / 2} d \theta
\]
\[
=(\sin \phi) R_{F}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1\right)-\frac{1}{3} k^{2}(\sin \phi)^{3} R_{D}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1\right)
\]
\(\Pi(\phi, k, n)=\int_{0}^{\phi}\left(1+n \sin ^{2} \theta\right)^{-1}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} d \theta\)
\[
=(\sin \phi) R_{F}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1\right)-\frac{n}{3}(\sin \phi)^{3} R_{J}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1,1+n \sin ^{2} \phi\right)
\]
\[
D(\phi, k)=\int_{0}^{\phi} \sin ^{2} \theta\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} d \theta
\]
\[
=\frac{1}{3}(\sin \phi)^{3} R_{D}\left(\cos ^{2} \phi, 1-k^{2} \sin ^{2} \phi, 1\right)
\]
\[
K(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} d \theta
\]
\[
=R_{F}\left(0,1-k^{2}, 1\right)
\]
\[
E(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{1 / 2} d \theta
\]
\[
=R_{F}\left(0,1-k^{2}, 1\right)-\frac{1}{3} k^{2} R_{D}\left(0,1-k^{2}, 1\right)
\]

The function \(R_{C}(x, y)\) is related to inverse trigonometric and inverse hyperbolic functions.
\[
\begin{array}{ll}
\ln x=(x-1) R_{\mathrm{c}}\left[\left(\frac{1+x}{2}\right), x\right] & 0<x<\infty \\
\sin ^{-1} x=x R_{\mathrm{c}}\left(1-x^{2}, 1\right) & -1 \leq x \leq 1 \\
\sinh ^{-1} x=x R_{\mathrm{c}}\left(1+x^{2}, 1\right) & -\infty<x<\infty \\
\cos ^{-1} x=\sqrt{1-x^{2}} R_{\mathrm{c}}\left(x^{2}, 1\right) & 0 \leq x \leq 1 \\
\cosh ^{-1} x=\sqrt{x^{2}-1} R_{\mathrm{c}}\left(x^{2}, 1\right) & 1 \leq x<\infty \\
\tan ^{-1} x=x R_{\mathrm{c}}\left(1,1+x^{2}\right) & -\infty<x<\infty \\
\tanh ^{-1} x=x R_{\mathrm{c}}\left(1,1-x^{2}\right) & -1<x<1 \\
\cot ^{-1} x=R_{\mathrm{c}}\left(x^{2}, x^{2}+1\right) & 0<x<\infty \\
\operatorname{coth}^{-1} x=R_{\mathrm{c}}\left(x^{2}, x^{2}-1\right) & 1<x<\infty
\end{array}
\]

\section*{ELK}

This function evaluates the complete elliptic integral of the kind \(k(x)\).

\section*{Function Return Value}

ELK - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) \(X\) must be greater than or equal to 0 and less than 1 .

\section*{FORTRAN 90 Interface}

Generic: ELK (x)
Specific: The specific interface names are S_ELK and D_ELK.

\section*{FORTRAN 77 Interface}
Single: ELK (X)

Double: \(\quad\) The double precision name is DELK.

\section*{Description}

The complete elliptic integral of the first kind is defined to be
\[
K(x)=\int_{0}^{\pi / 2} \frac{d \theta}{\left[1-x \sin ^{2} \theta\right]^{1 / 2}} \quad \text { for } 0 \leq x<1
\]

The argument \(x\) must satisfy \(0 \leq x<1\); otherwise, ELK is set to \(b=\operatorname{AMACH}(2)\), the largest representable float-ing-point number.

The function \(K(x)\) is computed using the routine ELRF and the relation \(K(x)=R_{F}(0,1-x, 1)\).


Figure 9.1 - Plot of \(K(x)\) and \(E(x)\)

\section*{Example}

In this example, \(K(0)\) is computed and printed.
```

 USE ELK_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X
 x = 0.0
 VALUE = ELK(X)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
 99999 FORMAT (' ELK(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ELK(0.000) = 1.571

```

\section*{ELE}

This function evaluates the complete elliptic integral of the second kind \(E(x)\).

\section*{Function Return Value}
\(E L E\) - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input) \(X\) must be greater than or equal to 0 and less than or equal to 1 .

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & ELE \((\mathrm{X})\) \\
Specific: & The specific interface names are S_ELE and D_ELE.
\end{tabular}

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & ELE \((X)\) \\
Double: & The double precision name is DELE.
\end{tabular}

\section*{Description}

The complete elliptic integral of the second kind is defined to be
\[
E(x)=\int_{0}^{\pi / 2}\left[1-x \sin ^{2} \theta\right]^{1 / 2} d \theta \quad \text { for } 0 \leq x<1
\]

The argument \(x\) must satisfy \(0 \leq x<1\); otherwise, ELE is set to \(b=\mathrm{AMACH}(2)\), the largest representable float-ing-point number.

The function \(E(x)\) is computed using the routines ELRF and ELRD. The computation is done using the relation
\[
E(x)=R_{F}(0,1-x, 1)-\frac{x}{3} R_{D}(0,1-x, 1)
\]

For a plot of \(E(x)\), see Figure 9.1, "Plot of \(K(x)\) and \(E(x) . "\)

\section*{Example}

In this example, \(E(0.33)\) is computed and printed.
```

USE ELE_INT
USE UMACH_INT
IMPLICIT NONE

```
```

! Declare variables
INTEGER
!
= 0.33
VALUE = ELE(X)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ELE(', F6.3, ') = ', F6.3)
END

```

Output
\(\operatorname{ELE}(0.330)=1.432\)

\section*{ELRF}

This function evaluates Carlson's incomplete elliptic integral of the first kind \(R_{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\).

\section*{Function Return Value}

ELRF - Function value. (Output)

\section*{Required Arguments}
\(X\) — First variable of the incomplete elliptic integral. (Input) It must be nonnegative
\(Y\) - Second variable of the incomplete elliptic integral. (Input) It must be nonnegative.
\(\mathbf{Z}\) - Third variable of the incomplete elliptic integral. (Input) It must be nonnegative.

\section*{FORTRAN 90 Interface}

Generic: ELRF ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) )
Specific: The specific interface names are S_ELRF and D_ELRF.

\section*{FORTRAN 77 Interface}

Single: \(\quad \operatorname{ELRF}(\mathrm{x}, \mathrm{y}, \mathrm{z})\)
Double: The double precision name is DELRF.

\section*{Description}

The Carlson's complete elliptic integral of the first kind is defined to be
\[
R_{F}(x, y, z)=\frac{1}{2} \int_{0}^{\infty} \frac{d t}{[(t+x)(t+y)(t+z)]^{1 / 2}}
\]

The arguments must be nonnegative and less than or equal to \(b / 5\). In addition, \(x+y, x+z\), and \(y+z\) must be greater than or equal to \(5 s\). Should any of these conditions fail, ELRF is set to \(b\). Here, \(b=\operatorname{AMACH}(2)\) is the largest and \(s=\operatorname{AMACH}(1)\) is the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

\section*{Example}

In this example, \(R_{F}(0,1,2)\) is computed and printed.
```

USE ELRF_INT
USE UMACH_INT

```
```

 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X, Y, Z
 Compute
 X = 0.0
 Y = 1.0
 Z = 2.0
 VALUE = ELRF(X, Y, Z)
 !
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (' ELRF(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{ELRF}(0.000,1.000,2.000)=1.311\)

\section*{ELRD}

This function evaluates Carlson's incomplete elliptic integral of the second kind \(R_{D}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\).

\section*{Function Return Value}

ELRD - Function value. (Output)

\section*{Required Arguments}
\(X\) - First variable of the incomplete elliptic integral. (Input) It must be nonnegative.
\(Y\) - Second variable of the incomplete elliptic integral. (Input) It must be nonnegative.
\(\mathbf{Z}\) - Third variable of the incomplete elliptic integral. (Input) It must be positive.

\section*{FORTRAN 90 Interface}

Generic: ELRD (X, Y, Z)
Specific: The specific interface names are S_ELRD and D_ELRD.

\section*{FORTRAN 77 Interface}

Single: ELRD (x, y, z)
Double: The double precision name is DELRD.

\section*{Description}

The Carlson's complete elliptic integral of the second kind is defined to be
\[
R_{D}(x, y, z)=\frac{3}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)(t+z)^{3}\right]^{1 / 2}}
\]

The arguments must be nonnegative and less than or equal to \(0.69(-\ln \varepsilon)^{1 / 9} s^{-2 / 3}\) where \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision, \(s=\operatorname{AMACH}(1)\) is the smallest representable positive number. Furthermore, \(x+y\) and \(z\) must be greater than \(\max \left\{3 s^{2 / 3}, 3 / b^{2 / 3}\right\}\), where \(b=\operatorname{AMACH}(2)\) is the largest floating-point number. If any of these conditions are false, then ELRD is set to \(b\).

The function ELRD is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

\section*{Example}

In this example, \(R_{D}(0,2,1)\) is computed and printed.
```

 USE ELRD_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL VALUE, X, Y, Z
 !
X=0.0
Y = 2.0
Z = 1.0
VALUE = ELRD(X, Y, Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (' ELRD(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ELRD(0.000, 2.000, 1.000)=1.797

```

\section*{ELRJ}

This function evaluates Carlson's incomplete elliptic integral of the third kind \(R_{J}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{RHO})\)

\section*{Function Return Value}

ELRJ - Function value. (Output)

\section*{Required Arguments}
\(X\) - First variable of the incomplete elliptic integral. (Input) It must be nonnegative.
\(Y\) - Second variable of the incomplete elliptic integral. (Input) It must be nonnegative.
Z - Third variable of the incomplete elliptic integral. (Input) It must be nonnegative.
RHO - Fourth variable of the incomplete elliptic integral. (Input) It must be positive.

\section*{FORTRAN 90 Interface}

Generic: ELRJ (X, Y, Z, RHO)
Specific: The specific interface names are S_ELRJ and D_ELRJ.

\section*{FORTRAN 77 Interface}

Single: ELRJ (X, Y, Z, RHO)
Double: The double precision name is DELRJ.

\section*{Description}

The Carlson's complete elliptic integral of the third kind is defined to be
\[
R_{J}(x, y, z, \rho)=\frac{3}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)(t+z)(t+\rho)^{2}\right]^{1 / 2}}
\]

The arguments must be nonnegative. In addition, \(x+y, x+z, y+z\) and \(\rho\) must be greater than or equal to \((5 s)^{1 / 3}\) and less than or equal to \(.3(b / 5)^{1 / 3}\), where \(s=\operatorname{AMACH}(1)\) is the smallest representable floating-point number. Should any of these conditions fail, ELRJ is set to \(b=\operatorname{AMACH}(2)\), the largest floating-point number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

\section*{Example}

In this example, \(R_{J}(2,3,4,5)\) is computed and printed.
```

 USE ELRJ_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL RHO, VALUE, X, Y, Z
Compute
X=2.0
Y=3.0
Z = 4.0
RHO = 5.0
VALUE = ELRJ (X, Y, Z, RHO)
Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, RHO, VALUE
99999 FORMAT (' ELRJ(', F6.3, ',', F6.3, ',', F6.3, ',', F6.3, \&
') = ', F6.3)
END

```

\section*{Output}

ELRJ (2.000, 3.000, 4.000, 5.000) \(=0.143\)

\section*{ELRC}

This function evaluates an elementary integral from which inverse circular functions, logarithms and inverse hyperbolic functions can be computed.

\section*{Function Return Value}

ELRC - Function value. (Output)

\section*{Required Arguments}
\(X\) — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.
\(Y\) - Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

\section*{FORTRAN 90 Interface}

Generic: \(\quad \operatorname{ELRC}(\mathrm{X}, \mathrm{Y})\)
Specific: The specific interface names are S_ELRC and D_ELRC.

\section*{FORTRAN 77 Interface}

Single:
ELRC (X, Y)
Double: The double precision name is DELRC.

\section*{Description}

The special case of Carlson's complete elliptic integral of the first kind is defined to be
\[
R_{C}(x, y)=\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\left[(t+x)(t+y)^{2}\right]^{1 / 2}}
\]

The argument \(x\) must be nonnegative, \(y\) must be positive, and \(x+y\) must be less than or equal to \(b / 5\) and greater than or equal to 5 s . If any of these conditions are false, then ELRC is set to \(b\). Here, \(b=\operatorname{AMACH}(2)\) is the largest and \(s=\operatorname{AMACH}(1)\) is the smallest representable floating-point number.

The function ELRC is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

\section*{Comments}

The sum \(X+Y\) must be greater than or equal to ARGMIN and both \(X\) and \(Y\) must be less than or equal to ARGMAX. ARGMIN \(=s * 5\) and ARGMAX \(=b / 5\), where \(s\) is the machine minimum (AMACH(1)) and \(b\) is the machine maximum (AMACH(2)).

\section*{Example}

In this example, \(R_{C}(2.25,2.0)\) is computed and printed.
```

 USE ELRC_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X, Y
X=0.0
Y = 1.0
VALUE = ELRC(X, Y)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, VALUE
99999 FORMAT (' ELRC(', F6.3, ',', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ELRC(0.000, 1.000)=1.571

```

\section*{Chapter 10: Elliptic and Related Functions}

\section*{Routines}
10.1 Weierstrass Elliptic and Related Functions
Lemninscatic case CWPL ..... 269
Lemninscatic case derivative ..... CWPLD ..... 271
Equianharmonic case CWPQ ..... 273
Equianharmonic case derivative CWPQD ..... 275
10.2 Jacobi Elliptic FunctionsJacobi function \(\mathrm{sn}(x, m)\) (real argument)EJSN277
Jacobi function \(\mathrm{cn}(x, m)\) (real argument) EJCN ..... 280
Jacobi function \(\mathrm{dn}(x, m)\) (real argument) ..... EJDN ..... 283

\section*{Usage Notes}

Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are analytic, except at a finite number of poles. Because of the periodicity, we need consider only the fundamental period parallelogram. The irreducible number of poles, counting multiplicities, is the order of the elliptic function. The simplest, non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, \(\wp\left(z, \omega, \omega^{\prime}\right)\) have a double pole at \(z=0\) and so are of order two. Here, \(2 \omega\) and \(2 \omega^{\prime}\) are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period of the functions is as follows:
\begin{tabular}{ll} 
Function & Periods \\
\(\operatorname{sn}(x, m)\) & \(4 K(m) 2 i K^{\prime}(m)\) \\
\(\mathrm{cn}(x, m)\) & \(4 K(m) 4 i K^{\prime}(m)\) \\
\(\operatorname{dn}(x, m)\) & \(2 K(m) 4 i K^{\prime}(m)\)
\end{tabular}

The function \(K(m)\) is the complete elliptic integral, see ELK, and \(K^{\prime}(m)=K(1-m)\).

\section*{CWPL}

This function evaluates the Weierstrass' \(\wp\) function in the lemniscatic case for complex argument with unit period parallelogram.

\section*{Function Return Value}

CWPL - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic:
CWPL (z)
Specific: The specific interface names are C_CWPL and Z_CWPL.

\section*{FORTRAN 77 Interface}

\section*{Complex: CWPL (Z)}

Double complex: The double complex name is ZWPL.

\section*{Description}

The Weierstrass' \(\wp\) function, \(\wp(z)=\wp\left(z \mid \omega, \omega^{\prime}\right)\), is an elliptic function of order two with periods \(2 \omega\) and \(2 \omega^{\prime}\) and a double pole at \(z=0\). \(\operatorname{CWPL}(z)\) computes \(\wp\left(z \mid \omega, \omega^{\prime}\right)\) with \(2 \omega=1\) and \(2 \omega^{\prime}=i\).

The input argument is first reduced to the fundamental parallelogram of all \(z\) satisfying \(-1 / 2 \leq \mathfrak{R z} \leq 1 / 2\) and \(-1 / 2 \leq \mathfrak{J} z \leq 1 / 2\). Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points \(z=m+n i\), which are the poles of CWPL. If the argument is a lattice point, then \(b=\operatorname{AMACH}(2)\), the largest floating-point number, is returned. If the argument has modulus greater than \(10 \varepsilon^{-1}\), then NaN (not a number) is returned. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

\section*{Example}

In this example, \(\wp(0.25+0.25 i)\) is computed and printed.
```

USE CWPL_INT
USE UMACH_INT
IMPLICIT NONE
Declare variables
INTEGER NOUT

```
```

 COMPLEX VALUE, Z
 ! Compute
Z = (0.25, 0.25)
VALUE = CWPL(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CWPL(', F6.3, ',', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{CWPL}(0.250,0.250)=(0.000,-6.875)\)

\section*{CWPLD}

This function evaluates the first derivative of the Weierstrass' \(\wp\) function in the lemniscatic case for complex argument with unit period parallelogram.

\section*{Function Return Value}

CWPLD - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: CWPLD (z)
Specific: The specific interface names are C_CWPLD and z_CWPLD.

\section*{FORTRAN 77 Interface}

Complex:
CWPLD (Z)
Double complex: The double complex name is ZWPLD.

\section*{Description}

The Weierstrass' \(\wp\) function, \(\wp(z)=\wp\left(z \mid \omega, \omega^{\prime}\right)\), is an elliptic function of order two with periods \(2 \omega\) and \(2 \omega^{\prime}\) and a double pole at \(z=0\). CWPLD(z) computes the derivative of \(\mathfrak{q}\left(z \mid \omega, \omega^{\prime}\right)\) with \(2 \omega=1\) and \(2 \omega^{\prime}=i\). CWPL computes \(\mathfrak{\xi}\left(z \mid \omega, \omega^{\prime}\right)\).

The input argument is first reduced to the fundamental parallelogram of all \(z\) satisfying \(-1 / 2 \leq \mathfrak{R z} \leq 1 / 2\) and \(-1 / 2 \leq \mathfrak{J} z \leq 1 / 2\). Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points \(z=m+n i\), which are the poles of CWPL. If the argument is a lattice point, then \(b=\operatorname{AMACH}(2)\), the largest floating-point number, is returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

\section*{Example}

In this example, \(\wp(0.25+0.25 i)\) is computed and printed.
```

 USE CWPLD_INT
 USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

```
```

!
Compute
Z = (0.25, 0.25)
VALUE = CWPLD(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CWPLD(', F6.3, ',', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
\(\operatorname{CWPLD}(0.250,0.250)=(36.054,36.054)\)

\section*{CWPQ}

This function evaluates the Weierstrass \(\wp\) function in the equianharmonic case for complex argument with unit period parallelogram.

\section*{Function Return Value}
\(C W P Q\) - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

\section*{Generic: CWPQ (z) \\ FORTRAN 77 Interface}

Specific: The specific interface names are C_CWPQ and z_CWPQ.

Complex:
CWPQ (Z)
Double complex: The double complex name is ZWPQ .

\section*{Description}

The Weierstrass' \(\wp\) function, \(\wp(z)=\wp\left(z \mid \omega, \omega^{\prime}\right)\), is an elliptic function of order two with periods \(2 \omega\) and \(2 \omega^{\prime}\) and a double pole at \(z=0\). \(\operatorname{CWPQ}(z)\) computes \(\wp\left(z \mid \omega, \omega^{\prime}\right)\) with
\[
4 \omega=1-i \sqrt{3} \text { and } 4 \omega^{\prime}=1+i \sqrt{3}
\]

The input argument is first reduced to the fundamental parallelogram of all \(z\) satisfying
\[
-1 / 2 \leq \mathfrak{R}_{z} \leq 1 / 2 \text { and }-\sqrt{3} / 4 \leq \mathfrak{J} z \leq \sqrt{3} / 4
\]

Then, a rational approximation is used.
All arguments are valid with the exception of the lattice points
\[
z=m(1-i \sqrt{3})+n(1+i \sqrt{3})
\]
which are the poles of CWPQ. If the argument is a lattice point, then \(b=\operatorname{AMACH}(2)\), the largest floating-point number, is returned. If the argument has modulus greater than \(10 \varepsilon^{-1}\), then NaN (not a number) is returned. Here, \(\varepsilon=\operatorname{AMACH}(4)\) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

\section*{Example}

In this example, \(\wp(0.25+0.14437567 i)\) is computed and printed.
```

 USE CWPQ_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 ! - (0.25, 0.14437567) Compute
Z = (0.25, 0.14437567)
VALUE = CWPQ(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CWPQ(', F6.3, ',', F6.3, ') = (', \&
F7.3, ',',F7.3, ')')
END

```

\section*{Output}
```

CWPQ(0.250, 0.144)=(5.895,-10.216)

```

\section*{CWPQD}

This function evaluates the first derivative of the Weierstrass \(\wp \wp\) function in the equianharmonic case for complex argument with unit period parallelogram.

\section*{Function Return Value}

CWPQD - Complex function value. (Output)

\section*{Required Arguments}
\(Z\) - Complex argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: CWPQD (z)
Specific: The specific interface names are C_CWPQD and z_CWPQD.

\section*{FORTRAN 77 Interface}

Complex:
CWPQD (Z)
Double complex: The double complex name is ZWPQD.

\section*{Description}

The Weierstrass' \(\wp\) function, \(\wp(z)=\wp\left(z \mid \omega, \omega^{\prime}\right)\), is an elliptic function of order two with periods \(2 \omega\) and \(2 \omega^{\prime}\) and a double pole at \(z=0 \operatorname{CWPQD}(z)\) computes the derivative of \(\wp\left(z \mid \omega, \omega^{\prime}\right)\) with
\[
4 \omega=1-i \sqrt{3} \text { and } 4 \omega^{\prime}=1+i \sqrt{3}
\]

CWPQ computes \(\wp\left(z \mid \omega, \omega^{\prime}\right)\).
The input argument is first reduced to the fundamental parallelogram of all \(z\) satisfying
\[
-1 / 2 \leq \mathfrak{R}_{z \leq 1 / 2} \text { and }-\sqrt{3} / 4 \leq \mathfrak{I}_{z \leq \sqrt{3}} / 4
\]

Then, a rational approximation is used.
All arguments are valid with the exception of the lattice points
\[
z=m(1-i \sqrt{3})+n(1+i \sqrt{3})
\]
which are the poles of CWPQ. If the argument is a lattice point, then \(b=\operatorname{AMACH}(2)\), the largest floating-point number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

\section*{Example}

In this example, \(\wp(0.25+0.14437567 i)\) is computed and printed.
```

 USE CWPQD_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 COMPLEX VALUE, Z
 ! Compute
Z = (0.25, 0.14437567)
VALUE = CWPQD(Z)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CWPQD(', F6.3, ',',F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

CWPQD(0.250, 0.144)=(0.028,85.934)

```

\section*{EJSN}

This function evaluates the Jacobi elliptic function \(\mathrm{sn}(x, m)\).

\section*{Function Return Value}

EJSN - Real or complex function value. (Output)

\section*{Required Arguments}
\(X\) - Real or complex argument for which the function value is desired. (Input)
\(A M\) — Parameter of the elliptic function ( \(m=k^{2}\) ). (Input)

\section*{FORTRAN 90 Interface}

Generic: EJSN (X, AM)
Specific: The specific interface names are S_EJSN, D_EJSN, C_EJSN, and Z_EJSN

\section*{FORTRAN 77 Interface}

Single: EJSN (X, AM)
Double: The double precision name is DEJSN.
Complex: The complex name is CEJSN.
Double Complex: The double complex name is ZEJSN.

\section*{Description}

The Jacobi elliptic function \(\operatorname{sn}(x, m)=\sin \phi\), where the amplitude \(\phi\) is defined by the following:
\[
x=\int_{0}^{\phi} \frac{d \theta}{\left(1-m \sin ^{2} \theta\right)^{1 / 2}}
\]

The function \(\operatorname{sn}(x, m)\) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, \(m\), is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small. The small parameter approximation is then applied.

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & The result is accurate to less than one half precision because \(|x|\) is too large. \\
3 & 2 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) REAL \((z) \mid\) is too \\
large.
\end{tabular} \\
3 & 3 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) AIMAG \((z) \mid\) is \\
too large.
\end{tabular} \\
3 & 5 & \begin{tabular}{l} 
Landen transform did not converge. Result may not be accurate. This should \\
never occur.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\mathrm{sn}(1.5,0.5)\) is computed and printed.

> USE EJSN_INT

USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT
REAL AM, VALUE, X
!
\(\mathrm{AM}=0.5\)
\(\mathrm{X}=1.5\)
VALUE = EJSN(X, AM)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT, 99999) X, AM, VALUE
99999 FORMAT (' EJSN(', F6.3, ',', F6.3, ') = ', F6.3)
END

\section*{Output}
```

EJSN(1.500, 0.500)=0.968

```

\section*{Example 2}

In this example, \(\mathrm{sn}(1.5+0.3 i, 0.5)\) is computed and printed.
```

USE EJSN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT

```
```

 REAL AM
 COMPLEX VALUE, Z
 !
Z = (1.5, 0.3)
AM = 0.5
VALUE = EJSN(Z, AM)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (' EJSN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

EJSN((1.500,0.300),0.500)=(0.993,0.054)

```

\section*{EJCN}

This function evaluates the Jacobi elliptic function \(\mathrm{cn}(x, m)\).

\section*{Function Return Value}

EJCN - Real or complex function value. (Output)

\section*{Required Arguments}
\(X\) - Real or complex argument for which the function value is desired. (Input)
\(A M\) — Parameter of the elliptic function ( \(m=k^{2}\) ). (Input)

\section*{FORTRAN 90 Interface}

Generic: EJCN (X, AM)
Specific: The specific interface names are S_EJCN, D_EJCN, C_EJCN, and Z_EJCN.

\section*{FORTRAN 77 Interface}

Single: EJCN (X, AM)
Double: The double precision name is DEJCN.
Complex: The complex name is CEJCN.
Double Complex: The double complex name is ZEJCN.

\section*{Description}

The Jacobi elliptic function \(\mathrm{cn}(x, m)=\cos \phi\), where the amplitude \(\phi\) is defined by the following:
\[
x=\int_{0}^{\phi} \frac{d \theta}{\left(1-m \sin ^{2} \theta\right)^{1 / 2}}
\]

The function \(\mathrm{cn}(x, m)\) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, \(m\), is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small. The small parameter approximation is then applied.

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & The result is accurate to less than one half precision because \(|\mathrm{x}|\) is too large. \\
3 & 2 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) REAL \((\mathrm{z}) \mid\) is too \\
large.
\end{tabular} \\
3 & 3 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) AIMAG \((z) \mid\) is \\
too large.
\end{tabular} \\
3 & 5 & \begin{tabular}{l} 
Landen transform did not converge. Result may not be accurate. This should \\
never occur.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\mathrm{cn}(1.5,0.5)\) is computed and printed.
```

 USE EJCN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL AM, VALUE, X
 !
AM = 0.5
X = 1.5
VALUE = EJCN(X, AM)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (' EJCN(', F6.3, ',', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

EJCN(1.500, 0.500)=0.250

```

\section*{Example 2}

In this example, \(\mathrm{cn}(1.5+0.3 i, 0.5)\) is computed and printed.
```

USE EJCN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT

```
```

 REAL AM
 COMPLEX VALUE, Z
 !
!
AM = 0.5
VALUE = EJCN(Z, AM)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (' EJCN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

EJCN((1.500, 0.300), 0.500)=(0.251,-0.212)

```

\section*{EJDN}

This function evaluates the Jacobi elliptic function \(\operatorname{dn}(x, m)\).

\section*{Function Return Value}

EJDN - Real or complex function value. (Output)

\section*{Required Arguments}
\(X\) - Real or complex argument for which the function value is desired. (Input)
\(A M\) — Parameter of the elliptic function ( \(m=k^{2}\) ). (Input)

\section*{FORTRAN 90 Interface}

Generic: EJDN (X, AM)
Specific: The specific interface names are S_EJDN, D_EJDN, C_EJDN, and Z_EJDN.

\section*{FORTRAN 77 Interface}

Single: EJDN (X, AM)
Double: The double precision name is DEJDN.
Complex: The complex precision name is CEJDN.
Double Complex: The double complex precision name is ZEJDN.

\section*{Description}

The Jacobi elliptic function \(\operatorname{dn}(x, m)=\left(1-m \sin ^{2} \phi\right)^{1 / 2}\), where the amplitude \(\phi\) is defined by the following:
\[
x=\int_{0}^{\phi} \frac{d \theta}{\left(1-m \sin ^{2} \theta\right)^{1 / 2}}
\]

The function \(\operatorname{dn}(x, m)\) is computed by first applying, if necessary, a Jacobi transformation so that the parameter, \(m\), is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter is small. The small parameter approximation is then applied.

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 2 & The result is accurate to less than one half precision because \(|x|\) is too large. \\
3 & 2 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) REAL \((z) \mid\) is too \\
large.
\end{tabular} \\
3 & 3 & \begin{tabular}{l} 
The result is accurate to less than one half precision because \(\mid\) AIMAG \((z) \mid\) is \\
too large.
\end{tabular} \\
3 & 5 & \begin{tabular}{l} 
Landen transform did not converge. Result may not be accurate. This should \\
never occur.
\end{tabular}
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\mathrm{dn}(1.5,0.5)\) is computed and printed.
```

 USE EJDN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL AM, VALUE, X
 AM = 0.5
 X = 1.5
 VALUE = EJDN(X, AM)
 ! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (' EJDN(', F6.3, ',',F6.3, ') = ', F6.3)
END

```
!

\section*{Output}
```

EJDN(1.500, 0.500) = 0.729

```

\section*{Example 2}

In this example, \(\mathrm{dn}(1.5+0.3 i, 0.5)\) is computed and printed.
```

USE EJDN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
Declare variables

```
```

 REAL AM
 COMPLEX VALUE, Z
 !
!
AM = 0.5
VALUE = EJDN(Z, AM)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (' EJDN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', \&
F6.3, ',', F6.3, ')')
END

```

\section*{Output}
```

EJDN((1.500, 0.300), 0.500)=(0.714,-0.037)

```

\section*{Chapter 11: Probability Distribution Functions and Inverses}

\section*{Routines}
11.1 Discrete Random Variables: Cumulative Distribution Functions and Probability Density Function
Binomial cumulative distribution function ..... BINDF ..... 294
Binomial probability density function ..... BINPR ..... 296
Geometric cumulative distribution function GEODF ..... 299
Inverse of Geometric cumulative distribution function GEOIN ..... 301
Geometric probability density function GEOPR ..... 303
Hypergeometric cumulative distribution function HYPDF ..... 305
Hypergeometric probability density function .HYPPR ..... 307
Poisson cumulative distribution function POIDF ..... 309
Poisson probability density function ..... 311
POIPR
Discrete uniform cumulative distribution function ..... 314
Inverse of discrete uniform cumulative distribution function ..... 316
Discrete uniform probability density function ..... 318
11.2 Continuous Random Variables: Distribution Functions and Their Inverses
Kolmogorov-Smirnov one-sided statistic cumulative distribution function . . AKS1DF ..... 320
Kolmogorov-Smirnov two-sided statistic cumulative distribution function . . AKS2DF ..... 323
Lognormal cumulative distribution function ALNDF ..... 326
Inverse of the lognormal cumulative distribution function .ALNIN ..... 328
Lognormal probability density function. ALNPR ..... 330
Normal (Gaussian) cumulative distribution function ANORDF ..... 332
Inverse of the normal cumulative distribution function ANORIN ..... 334
Normal (Gaussian) probability density function ANORPR ..... 336
Beta cumulative distribution function BETDF ..... 338
Inverse of the beta cumulative distribution function .BETIN ..... 341
Beta probability density function BETPR ..... 343
Noncentral beta cumulative distribution function .BETNDF ..... 345
Inverse of the noncentral beta cumulative distribution function BETNIN ..... 348
Noncentral beta probability density function BETNPR ..... 351
Bivariate normal cumulative distribution function BNRDF ..... 354
Chi-squared cumulative distribution function CHIDF ..... 356
Inverse of the chi-squared cumulative distribution function CHIIN ..... 359
Chi-squared probability density function CHIPR ..... 361
Noncentral chi-squared cumulative distribution function ..... 363
Inverse of the noncentral chi-squared cumulative distribution function CSNIN ..... 366
Noncentral chi-squared probability density function CSNPR ..... 368
Exponential distribution cumulative function EXPDF ..... 371
Inverse of the exponential cumulative distribution function EXPIN ..... 373
Exponential probability density function EXPPR ..... 375
Extreme value cumulative distribution function EXVDF ..... 377
Inverse of the Extreme value cumulative distribution function EXVIN ..... 379
Extreme value probability density function EXVPR ..... 381
\(F\) cumulative distribution function FDF ..... 383
Inverse of the \(F\) cumulative distribution function ..... 386
F probability density function FPR ..... 388
Noncentral \(F\) cumulative distribution function FNDF ..... 390
Inverse of the noncentral \(F\) cumulative distribution function FNIN ..... 393
Noncentral \(F\) probability density function FNPR ..... 396
Gamma cumulative distribution function GAMDF ..... 399
Inverse of the gamma cumulative distribution function ..... GAMIN ..... 402
Gamma probability density function GAMPR ..... 404
Rayleigh's cumulative distribution function RALDF ..... 406
Inverse of the Rayleigh's cumulative distribution function RALIN ..... 408
Rayleigh's probability density function RALPR ..... 409
Student's \(t\) cumulative distribution function ..... TDF ..... 411
Inverse of the Student's \(t\) cumulative distribution function ..... 413
Student's t probability density function. ..... 415
Noncentral Student's \(t\) cumulative distribution function ..... 417
Inverse of the noncentral Student's \(t\) cumulative distribution function ..... 420
Noncentral Student's \(t\) probability density function ..... 422
Uniform cumulative distribution function ..... 424
Inverse of the uniform cumulative distribution function ..... 426
Uniform probability density function ..... 428
Weibull cumulative distribution function ..... 430
Inverse of the Weibull cumulative distribution function ..... 432
Weibull probability density function ..... 434
11.3 General Continuous Random Variables

Distribution function given ordinates of density . . . . . . . . . . . . . . . . . . . . . . . GCDF 436
Inverse of distribution function given ordinates of density . . . . . . . . . . . . . . . GCIN 439
Inverse of distribution function given subprogram . . . . . . . . . . . . . . . . . . . . GFNIN 442

\section*{Usage Notes}

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are written for standard forms of statistical distributions. Hence, the number of parameters for any given distribution may be fewer than the number often associated with the distribution. For example, while a gamma distribution is often characterized by two parameters (or even a third, "location"), there is only one parameter that is necessary, the "shape." The "scale" parameter can be used to scale the variable to the standard gamma distribution. For another example, the functions relating to the normal distribution, ANORDF and ANORIN, are for a normal distribution with mean equal to zero and variance equal to one. For other means and variances, it is very easy for the user to standardize the variables by subtracting the mean and dividing by the square root of the variance.

The distribution function for the (real, single-valued) random variable \(X\) is the function \(F\) defined for all real \(x\) by
\[
F(x)=\operatorname{Prob}(X \leq x)
\]
where \(\operatorname{Prob}(\cdot)\) denotes the probability of an event. The distribution function is often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the left endpoint and 1 for values greater than the right endpoint. The routines in this chapter return the correct values for the distribution functions when values outside of the range of the random variable are input, but warning error conditions are set in these cases.

\section*{Discrete Random Variables}

For discrete distributions, the function giving the probability that the random variable takes on specific values is called the probability function, defined by
\[
p(x)=\operatorname{Prob}(X=x)
\]

The " \(P R\) " routines in this chapter evaluate probability functions.
The CDF for a discrete random variable is
\[
\begin{gathered}
F(x)=\sum_{A} p(k) \\
\sqrt{a^{2}+b^{2}}
\end{gathered}
\]
where \(A\) is the set such that \(k \leq x\). The " DF " routines in this chapter evaluate cumulative distribution functions. Since the distribution function is a step function, its inverse does not exist uniquely.


Figure II.I - Discrete Random Variable
In the plot above, a routine like BINPR in this chapter evaluates the individual probability, given X . A routine like BINDF would evaluate the sum of the probabilities up to and including the probability at \(X\).

\section*{Continuous Distributions}

For continuous distributions, a probability function, as defined above, would not be useful because the probability of any given point is 0 . For such distributions, the useful analog is the probability density function (PDF). The integral of the PDF is the probability over the interval; if the continuous random variable \(X\) has \(\operatorname{PDF} f\), then
\[
\operatorname{Prob}(a<X \leq b)=\int_{a}^{b} f(x) d x
\]

The relationship between the CDF and the PDF is
\[
F(x)=\int_{-\infty}^{x} f(t) d t
\]
as shown below.


Figure II. 2 - Probability Density Function
The "DF" routines for continuous distributions in this chapter evaluate cumulative distribution functions, just as the ones for discrete distributions.

For (absolutely) continuous distributions, the value of \(F(x)\) uniquely determines x within the support of the distribution. The " \(I N\) " routines in this chapter compute the inverses of the distribution functions; that is, given \(F(x)\) (called " P " for "probability"), a routine like BETIN computes \(x\). The inverses are defined only over the open interval \((0,1)\).


Figure II. 3 - Cumulative Probability Distribution Function

There are two routines in this chapter that deal with general continuous distribution functions. The routine GCDF computes a distribution function using values of the density function, and the routine GCIN computes the inverse. These two routines may be useful when the user has an estimate of a probability density.

\section*{Additional Comments}

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an inverse function, it is often impossible to achieve good accuracy because of the nature of the representation of numeric values. In this case, it may be better to work with the complementary distribution function (one minus the distribution function). If the distribution is symmetric about some point (as the normal distribution, for example) or is reflective about some point (as the beta distribution, for example), the complementary distribution function has a simple relationship with the distribution function. For example, to evaluate the standard normal distribution at 4.0, using ANORIN directly, the result to six places is 0.999968 . Only two of those digits are really useful, however. A more useful result may be 1.000000 minus this value, which can be obtained to six significant figures as \(3.16713 \mathrm{E}-05\) by evaluating ANORIN at -4.0 . For the normal distribution, the two values are related by \(\Phi(x)=1-\Phi(-x)\), where \(\Phi(\cdot)\) is the normal distribution function. Another example is the beta distribution with parameters 2 and 10. This distribution is skewed to the right; so evaluating BETDF at 0.7, we obtain 0.999953 . A more precise result is obtained by evaluating BETDF with parameters 10 and 2 at 0.3 . This yields \(4.72392 \mathrm{E}-5\). (In both of these examples, it is wise not to trust the last digit.)

Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun (1964). The algorithms make use of various expansions and recursive relationships, and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments; however, if the input to one of the distribution functions in this chapter is outside the range of the random variable, an error of Type 1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a "note;" and, by default, no printing or stopping of the program occurs. The other common errors that occur in the routines of this chapter are Type 2, "alert," for a function value being set to zero due to underflow; Type 3, "warning," for considerable loss of accuracy in the result returned; and Type 5, "terminal," for incorrect and/ or inconsistent input, complete loss of accuracy in the result returned, or inability to represent the result (because of overflow). When a Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value code, obtained by IMSL routine \(\operatorname{AMACH}(6)\). (See the section User Errors in the Reference Material.)

\section*{BINDF}

This function evaluates the binomial cumulative distribution function.

\section*{Function Return Value}

BINDF - Function value, the probability that a binomial random variable takes a value less than or equal to K. (Output)
BINDF is the probability that K or fewer successes occur in N independent Bernoulli trials, each of which has a PIN probability of success.

\section*{Required Arguments}
\(K\) - Argument for which the binomial distribution function is to be evaluated. (Input)
\(N\) - Number of Bernoulli trials. (Input)
PIN — Probability of success on each independent trial. (Input)

\section*{FORTRAN 90 Interface}

Generic: BINDF (K, N, PIN)
Specific: The specific interface names are S_BINDF and D_BINDF.

\section*{FORTRAN 77 Interface}

\author{
Single: BINDF (K, N, PIN) \\ Double: \(\quad\) The double precision name is DBINDF.
}

\section*{Description}

Function BINDF evaluates the cumulative distribution function of a binomial random variable with parameters \(n\) and \(p\) where \(n=\mathrm{N}\) and \(p=\operatorname{PIN}\). It does this by summing probabilities of the random variable taking on the specific values in its range. These probabilities are computed by the recursive relationship
\[
\operatorname{Pr}(X=j)=\frac{(n+1-j) p}{j(1-p)} \operatorname{Pr}(X=j-1)
\]

To avoid the possibility of underflow, the probabilities are computed forward from 0 , if \(k\) is not greater than \(n\) times \(p\), and are computed backward from \(n\), otherwise. The smallest positive machine number, \(\varepsilon\), is used as the starting value for summing the probabilities, which are rescaled by \((1-p)^{n} \varepsilon\) if forward computation is performed and by \(p^{n} \varepsilon\) if backward computation is done. For the special case of \(p=0\), BINDF is set to 1 ; and for the case \(p=1\), BINDF is set to 1 if \(k=n\) and to 0 otherwise.

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 3 & The input argument, K, is less than zero. \\
1 & 4 & The input argument, K, is greater than the number of Bernoulli trials, N.
\end{tabular}

\section*{Example}

Suppose \(X\) is a binomial random variable with \(n=5\) and \(p=0.95\). In this example, we find the probability that \(X\) is less than or equal to 3 .
```

 USE UMACH_INT
 USE BINDF_INT
 IMPLICIT NONE
 INTEGER K, N, NOUT
 REAL PIN, PR
 CALL UMACH (2, NOUT)
 K=3
 N}=
 PIN = 0.95
 PR = BINDF(K,N, PIN)
 WRITE (NOUT,99999) PR
 9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ l e s s ~ t h a n ~ o r ~ e q u a l ~ t o ~ 3 ~ i s ~ ' ~ \& ~
, F6.4)
END

```
!

\section*{Output}
```

The probability that X is less than or equal to 3 is 0.0226

```

\section*{BINPR}

This function evaluates the binomial probability density function.

\section*{Function Return Value}

BINPR Function value, the probability that a binomial random variable takes a value equal to K . (Output)

\section*{Required Arguments}
\(K\) - Argument for which the binomial probability function is to be evaluated. (Input)
\(N\) - Number of Bernoulli trials. (Input)
PIN — Probability of success on each independent trial. (Input)

\section*{FORTRAN 90 Interface}

Generic: BINPR (K, N, PIN)
Specific: The specific interface names are S_BINPR and D_BINPR.

\section*{FORTRAN 77 Interface}
Single: \(\quad\) BINPR (K, N, PIN)

Double: \(\quad\) The double precision name is DBINPR.

\section*{Description}

The function BINPR evaluates the probability that a binomial random variable with parameters \(n\) and \(p\) where \(p=\) PIN takes on the value \(k\). It does this by computing probabilities of the random variable taking on the values in its range less than (or the values greater than) \(k\). These probabilities are computed by the recursive relationship
\[
\operatorname{Pr}(X=j)=\frac{(n+1-j) p}{j(1-p)} \operatorname{Pr}(X=j-1)
\]

To avoid the possibility of underflow, the probabilities are computed forward from 0 , if \(k\) is not greater than \(n\) times \(p\), and are computed backward from \(n\), otherwise. The smallest positive machine number, \(\varepsilon\), is used as the starting value for computing the probabilities, which are rescaled by \((1-p)^{n} \varepsilon\) if forward computation is performed and by \(p^{n} \varepsilon\) if backward computation is done.

For the special case of \(p=0\), BINPR is set to 0 if \(k\) is greater than 0 and to 1 otherwise; and for the case \(p=1\), BINPR is set to 0 if \(k\) is less than \(n\) and to 1 otherwise.


Figure II. 4 - Binomial Probability Function

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 3 & The input argument, \(K\), is less than zero. \\
1 & 4 & The input argument, \(K\), is greater than the number of Bernoulli trials, \(N\).
\end{tabular}

\section*{Example}

Suppose \(X\) is a binomial random variable with \(N=5\) and PIN \(=0.95\). In this example, we find the probability that \(X\) is equal to 3 .
```

USE UMACH_INT
USE BINPR_INT
IMPLICIT NONE
INTEGER K, N, NOUT
REAL PIN, PR
CALL UMACH (2, NOUT)
K = 3
N}=
PIN = 0.95
PR = BINPR(K,N,PIN)
WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 3 is ', F6.4)
END

```

\section*{Output}

The probability that \(X\) is equal to 3 is 0.0214

\section*{GEODF}

This function evaluates the discrete geometric cumulative probability distribution function.

\section*{Function Return Value}

GEODF - Function value, the probability that a geometric random variable takes a value less than or equal to IX. (Output)

\section*{Required Arguments}
\(I X\) - Argument for which the geometric cumulative distribution function is to be evaluated. (Input)
PIN - Probability parameter for each independent trial (the probability of success for each independent trial). PIN must be in the open interval ( 0,1 ). (Input)

\section*{FORTRAN 90 Interface}

Generic: GEODF (IX, PIN)
Specific: The specific interface names are S_GEODF and D_GEODF.

\section*{FORTRAN 77 Interface}

Single: GEODF (IX, PIN)
Double: The double precision name is DGEODF.

\section*{Description}

The function GEODF evaluates the discrete geometric cumulative probability distribution function with parameter \(p=\mathrm{PIN}\), defined
\[
F(x \mid p)=\sum_{i=0}^{\lfloor x\rfloor} p q^{i}, \quad q=1-p, \quad 0<p<1
\]

The return value is the probability that up to \(x\) trials would be observed before observing a success.

\section*{Example}

In this example, we evaluate the probability function at \(I X=3, P I N=0.25\).
```

USE UMACH_INT
USE GEODF_INT
IMPLICIT NONE
INTEGER NOUT, IX

```
```

 REAL PIN, PR
 CALL UMACH(2, NOUT)
 IX = 3
 PIN = 0.25e0
 PR = GEODF(IX, PIN)
 WRITE (NOUT, 99999) IX, PIN, PR
 99999 FORMAT (' GEODF(', I2, ', ', F4.2, ') = ', F10.6)
END

```

\section*{Output}

GEODF \((3,0.25)=0.683594\)

\section*{GEOIN}

This function evaluates the inverse of the geometric cumulative probability distribution function.

\section*{Function Return Value}

GEOIN - Integer function value. The probability that a geometric random variable takes a value less than or equal to the returned value is the input probability, P. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the discrete geometric cumulative distribution function is to be evaluated. P must be in the open interval ( 0,1 ). (Input)
PIN - Probability parameter for each independent trial (the probability of success for each independent trial). PIN must be in the open interval ( 0,1 ). (Input)

\section*{FORTRAN 90 Interface}

Generic: GEOIN (P, PIN)
Specific: The specific interface names are S_GEOIN and D_GEOIN.

\section*{FORTRAN 77 Interface}
```

Single: GEOIN (P, PIN)
Double: The double precision name is DGEOIN.

```

\section*{Description}

The function GEOIN evaluates the inverse distribution function of a geometric random variable with parameter PIN. The inverse of the CDF is defined as the smallest integer \(x\) such that the geometric CDF is not less than a given value \(P, 0<P<1\).

\section*{Example}

In this example, we evaluate the inverse probability function at PIN \(=0.25, \mathrm{P}=0.6835\).
```

USE UMACH_INT
USE GEOIN_INT
IMPLICIT NONE
INTEGER NOUT, IX
REAL P, PIN
CALL UMACH(2, NOUT)
PIN = 0.25
P = 0.6835
IX = GEOIN(P, PIN)
WRITE (NOUT, 99999) P, PIN, IX
99999 FORMAT (' GEOIN(', F4.2, ', ', F6.4 ') = ', I2)
END

```

Output
GEOIN(0.6835, 0.25) = 3

\section*{GEOPR}

This function evaluates the discrete geometric probability density function.

\section*{Function Return Value}

GEOPR - Function value, the probability that a random variable from a geometric distribution having parameter PIN will be equal to IX. (Output)

\section*{Required Arguments}
\(I X\) - Argument for which the discrete geometric probability density function is to be evaluated. IX must be greater than or equal to 0 . (Input)
PIN - Probability parameter of the geometric probability function (the probability of success for each independent trial). PIN must be in the open interval ( 0,1 ). (Input)

\section*{FORTRAN 90 Interface}

Generic: GEOPR (IX, PIN)
Specific: The specific interface names are S_GEOPR and D_GEOPR.

\section*{FORTRAN 77 Interface}
```

Single: GEOPR (IX, PIN)
Double: \quad The double precision name is DGEOPR.

```

\section*{Description}

The function GEOPR evaluates the discrete geometric probability density function, defined
\[
f(x \mid p)=p q^{x}, \quad q=1-p, \quad 0<p<1, \quad x=0,1, \ldots \operatorname{HUGE}(1), \text { where } p=\text { PIN. }
\]

\section*{Example}

In this example, we evaluate the probability density function at \(\mathrm{IX}=3, \mathrm{PIN}=0.25\).
```

USE UMACH_INT
USE GEOPR_INT
IMPLICIT NONE
INTEGER NOUT, IX
REAL PIN, PR
CALL UMACH(2, NOUT)
IX = 3
PIN = 0.25e0
PR = GEOPR(IX, PIN)
WRITE (NOUT, 99999) IX, PIN, PR

```

99999 FORMAT (' GEOPR(', I2, ', ', F4.2, ') = ', F6.4) END

Output
\(\operatorname{GEOPR}(3,0.25)=0.1055\)

\section*{HYPDF}

This function evaluates the hypergeometric cumulative distribution function.

\section*{Function Return Value}

HYPDF - Function value, the probability that a hypergeometric random variable takes a value less than or equal to \(K\). (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn from a lot of size L that contains M defectives.
See Comment 1.

\section*{Required Arguments}
\(K\) - Argument for which the hypergeometric cumulative distribution function is to be evaluated. (Input)
\(N\) - Sample size. (Input)
N must be greater than zero and greater than or equal to K .
\(M\) - Number of defectives in the lot. (Input)
\(L\) - Lot size. (Input)
L must be greater than or equal to N and M .

\section*{FORTRAN 90 Interface}

Generic: HYPDF (K, N, M, L)
Specific: The specific interface names are S_HYPDF and D_HYPDF.

\section*{FORTRAN 77 Interface}
Single: \(\quad\) HYPDF (K, N, M, L)

Double: \(\quad\) The double precision name is DHYPDF.

\section*{Description}

The function HYPDF evaluates the cumulative distribution function of a hypergeometric random variable with parameters \(n, l\), and \(m\). The hypergeometric random variable \(X\) can be thought of as the number of items of a given type in a random sample of size \(n\) that is drawn without replacement from a population of size \(l\) containing \(m\) items of this type. The probability function is
\[
\operatorname{Pr}(X=j)=\frac{\binom{m}{j}\binom{l-m}{n-j}}{\binom{l}{n}} \text { for } j=i, i+1, i+2, \ldots \min (n, m)
\]
where \(i=\max (0, n-l+m)\).

If \(k\) is greater than or equal to \(i\) and less than or equal to \(\min (n, m), \operatorname{HYPDF}\) sums the terms in this expression for \(j\) going from \(i\) up to \(k\). Otherwise, HYPDF returns 0 or 1 , as appropriate. So, as to avoid rounding in the accumulation, HYPDF performs the summation differently depending on whether or not \(k\) is greater than the mode of the distribution, which is the greatest integer less than or equal to \((m+1)(n+1) /(l+2)\).

\section*{Comments}
1. If the generic version of this function is used, the immediate result must be stored in a variable before use in an expression. For example:
```

X = HYPDF (K, N, M, L)
Y = SQRT(X)

```
must be used rather than
```

Y = SQRT(HYPDF (K, N, M, L))

```

If this is too much of a restriction on the programmer, then the specific name can be used without this restriction.
2. Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 5 & The input argument, K, is less than zero. \\
1 & 6 & The input argument, K, is greater than the sample size.
\end{tabular}

\section*{Example}

Suppose \(X\) is a hypergeometric random variable with \(N=100, L=1000\), and \(M=70\). In this example, we evaluate the distribution function at 7 .
```

USE UMACH_INT
USE HYPDF_INT
IMPLICIT NONE
INTEGER K, L, M, N, NOUT
REAL DF
CALL UMACH (2, NOUT)
K = 7
N = 100
L = 1000
M = 70
DF = HYPDF(K,N,M,L)
WRITE (NOUT,99999) DF
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ l e s s ~ t h a n ~ o r ~ e q u a l ~ t o ~ 7 ~ i s ~ ' ~ \& ~
, F6.4)
END

```

\section*{Output}
```

The probability that X is less than or equal to 7 is 0.5995

```

\section*{HYPPR}

This function evaluates the hypergeometric probability density function.

\section*{Function Return Value}
\(H Y P P R\) - Function value, the probability that a hypergeometric random variable takes a value equal to \(K\). (Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn from a lot of size L that contains \(M\) defectives. See Comment 1.

\section*{Required Arguments}
\(K\) - Argument for which the hypergeometric probability function is to be evaluated. (Input)
\(N\) - Sample size. (Input)
N must be greater than zero and greater than or equal to K .
\(M\) - Number of defectives in the lot. (Input)
\(L\) - Lot size. (Input)
\(L\) must be greater than or equal to \(N\) and \(M\).

\section*{FORTRAN 90 Interface}

Generic: \(\quad \operatorname{HYPPR}(\mathrm{K}, \mathrm{N}, \mathrm{M}, \mathrm{L})\)
Specific: The specific interface names are S_HYPPR and D_HYPPR.

\section*{FORTRAN 77 Interface}
Single: \(\quad \operatorname{HYPPR}(\mathrm{K}, \mathrm{N}, \mathrm{M}, \mathrm{L})\)

Double: \(\quad\) The double precision name is DHYPPR.

\section*{Description}

The function HYPPR evaluates the probability density function of a hypergeometric random variable with parameters \(n, l\), and \(m\). The hypergeometric random variable \(X\) can be thought of as the number of items of a given type in a random sample of size \(n\) that is drawn without replacement from a population of size \(l\) containing \(m\) items of this type. The probability density function is
\[
\operatorname{Pr}(X=k)=\frac{\binom{m}{k}\binom{l-m}{n-k}}{\binom{l}{n}} \text { for } k=i, i+1, i+2, \ldots \min (n, m)
\]
where \(i=\max (0, n-l+m)\). HYPPR evaluates the expression using log gamma functions.

\section*{Comments}
1. If the generic version of this function is used, the immediate result must be stored in a variable before use in an expression. For example:
```

X = HYPPR(K, N, M, L)
Y = SQRT(X)

```
must be used rather than
```

Y = SQRT(HYPPR(K, N, M, L))

```

If this is too much of a restriction on the programmer, then the specific name can be used without this restriction.
2. Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 5 & The input argument, K, is less than zero. \\
1 & 6 & The input argument, K, is greater than the sample size.
\end{tabular}

\section*{Example}

Suppose \(X\) is a hypergeometric random variable with \(N=100, L=1000\), and \(M=70\). In this example, we evaluate the probability function at 7 .
```

USE UMACH_INT
USE HYPPR_INT
IMPLICIT NONE
INTEGER K, L, M, N, NOUT
REAL PR
CALL UMACH (2, NOUT)
K = 7
N = 100
L = 1000
M = 70
PR = HYPPR(K,N,M,L)
WRITE (NOUT,99999) PR
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ e q u a l ~ t o ~ 7 ~ i s ~ ' , ~ F 6 . 4)
END

```

\section*{Output}
```

The probability that }X\mathrm{ is equal to }7\mathrm{ is 0.1628

```

\section*{POIDF}

This function evaluates the Poisson cumulative distribution function.

\section*{Function Return Value}

POIDF - Function value, the probability that a Poisson random variable takes a value less than or equal to K. (Output)

\section*{Required Arguments}
\(K\) - Argument for which the Poisson cumulative distribution function is to be evaluated. (Input)
THETA - Mean of the Poisson distribution. (Input) THETA must be positive.

\section*{FORTRAN 90 Interface}

Generic: POIDF (K, THETA)
Specific: The specific interface names are S_POIDF and D_POIDF.

\section*{FORTRAN 77 Interface}

Single:
Double:

POIDF (K, THETA)
The double precision name is DPOIDF.

\section*{Description}

The function POIDF evaluates the cumulative distribution function of a Poisson random variable with parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function (with \(\theta=\) THETA) is
\[
f(x)=e^{-\theta} \theta^{x} / x!, \quad \text { for } x=0,1,2, \ldots
\]

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed. POIDF uses the recursive relationship
\[
f(x+1)=f(x) \theta /(x+1), \quad \text { for } x=0,1,2, \ldots k-1
\]
with \(f(0)=\mathrm{e}^{-\theta}\).

\section*{Comments}

Informational error
Type
Code

\section*{Description}
1
1
The input argument, \(K\), is less than zero.

\section*{Example}

Suppose \(X\) is a Poisson random variable with \(\theta=10\). In this example, we evaluate the distribution function at 7 .
```

 USE UMACH_INT
 USE POIDF_INT
 IMPLICIT NONE
 INTEGER K, NOUT
 REAL DF, THETA
 !
CALL UMACH (2, NOUT)
K = 7
THETA = 10.0
DF = POIDF (K,THETA)
WRITE (NOUT,99999) DF
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ l e s s ~ t h a n ~ o r ~ e q u a l ~ t o ~ ' , ~ \& ~
'7 is ', F6.4)
END

```

\section*{Output}
```

The probability that X is less than or equal to 7 is 0.2202

```

\section*{POIPR}

This function evaluates the Poisson probability density function.

\section*{Function Return Value}

POIPR - Function value, the probability that a Poisson random variable takes a value equal to K . (Output)

\section*{Required Arguments}
\(K\) - Argument for which the Poisson probability density function is to be evaluated. (Input)
THETA - Mean of the Poisson distribution. (Input) THETA must be positive.

\section*{FORTRAN 90 Interface}

Generic: POIPR (K, THETA)
Specific: \(\quad\) The specific interface names are S_POIPR and D_POIPR.

\section*{FORTRAN 77 Interface}

Single:
POIPR (K, THETA)
Double:
The double precision name is DPOIPR.

\section*{Description}

The function POIPR evaluates the probability density function of a Poisson random variable with parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function (with \(\theta=\) THETA) is
\[
f(x)=e^{-\theta} \theta^{k} / k!, \quad \text { for } k=0,1,2, \ldots
\]

POIPR evaluates this function directly, taking logarithms and using the log gamma function.


Figure II.5-Poisson Probability Function

\section*{Comments}

Informational error

\section*{Type}

\section*{Code}

\section*{Description}

1
1
The input argument, \(K\), is less than zero.

\section*{Example}

Suppose \(X\) is a Poisson random variable with \(\theta=10\). In this example, we evaluate the probability function at 7.
```

 USE UMACH_INT
 USE POIPR_INT
 IMPLICIT NONE
 INTEGER K, NOUT
 REAL PR, THETA
 CALL UMACH (2, NOUT)
 K = 7
 THETA = 10.0
 PR = POIPR(K,THETA)
 WRITE (NOUT,99999) PR
 99999 FORMAT (' The probability that X is equal to 7 is ', F6.4)
END

```
!

\section*{Output}

The probability that \(X\) is equal to 7 is 0.0901

\section*{UNDDF}

This function evaluates the discrete uniform cumulative distribution function.

\section*{Function Return Value}

UNDDF - Function value, the probability that a uniform random variable takes a value less than or equal to IX. (Output)

\section*{Required Arguments}
\(I X\) - Argument for which the discrete uniform cumulative distribution function is to be evaluated. (Input)
\(N\) - Scale parameter. N must be greater than 0. (Input)

\section*{FORTRAN 90 Interface}

Generic: UNDDF (IX, N)
Specific: The specific interface names are S_UNDDF and D_UNDDF.

\section*{FORTRAN 77 Interface}

Single: UNDDF (IX, N)
Double: \(\quad\) The double precision name is DUNDDF.

\section*{Description}

The notation below uses the floor and ceiling function notation, L. \(\rfloor\) and \(\lceil\).\(\rceil .\)
The function UNDDF evaluates the discrete uniform cumulative probability distribution function with scale parameter \(N\), defined
\[
F(x \mid N)=\frac{\lfloor x\rfloor}{N}, \quad 1 \leq x \leq N
\]

\section*{Example}

In this example, we evaluate the probability function at \(I X=3, N=5\).
```

USE UMACH_INT
USE UNDDF_INT
IMPLICIT NONE
INTEGER NOUT, IX, N
REAL PR
CALL UMACH(2, NOUT)
IX = 3
N}=
PR = UNDDF(IX, N)

```
```

 WRITE (NOUT, 99999) IX, N, PR
 99999 FORMAT (' UNDDF(', I2, ', ', I2, ') = ', F6.4)
END

```

Output
\(\operatorname{UNDDF}(3,5)=0.6000\)

\section*{UNDIN}

This function evaluates the inverse of the discrete uniform cumulative distribution function.

\section*{Function Return Value}

UNDIN - Integer function value. The probability that a uniform random variable takes a value less than or equal to the returned value is the input probability, P. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the discrete uniform cumulative distribution function is to be evaluated. P must be nonnegative and less than or equal to 1.0. (Input)
\(N\) - Scale parameter. N must be greater than 0 . (Input)

\section*{FORTRAN 90 Interface}

Generic: UNDIN (P, N)
Specific: The specific interface names are S_UNDIN and D_UNDIN.

\section*{FORTRAN 77 Interface}

Single: UNDIN (P, N)
Double: \(\quad\) The double precision name is DUNDIN.

\section*{Description}

The notation below uses the floor and ceiling function notation, \(\lfloor\).\(\rfloor and \lceil\).\(\rceil .\)
The function UNDIN evaluates the inverse distribution function of a discrete uniform random variable with scale parameter N , defined
\[
x=\lceil p N\rceil, \quad 0 \leq p \leq 1
\]

\section*{Example}

In this example, we evaluate the inverse probability function at \(P=0.6, N=5\).
```

USE UMACH_INT
USE UNDIN_INT
IMPLICIT NONE
INTEGER NOUT, N, IX
REAL P
CALL UMACH(2, NOUT)
P}=0.6
N = 5
IX = UNDIN(P, N)
WRITE (NOUT, 99999) P, N, IX

```
```

99999 FORMAT (' UNDIN(', F4.2, ', ', I2 ') = ', I2)

```
    END

\section*{Output}
```

UNDIN(0.60, 5) = 3

```

\section*{UNDPR}

This function evaluates the discrete uniform probability density function.

\section*{Function Return Value}

UNDPR - Function value, the probability that a random variable from a uniform distribution having scale parameter N will be equal to IX. (Output)

\section*{Required Arguments}
\(I X\) - Argument for which the discrete uniform probability density function is to be evaluated. (Input) \(N\) - Scale parameter. N must be greater than 0 . (Input)

\section*{FORTRAN 90 Interface}

Generic: UNDPR (IX, N)
Specific: The specific interface names are S_UNDPR and D_UNDPR.

\section*{FORTRAN 77 Interface}

Single:
UNDPR (IX, N)
Double: \(\quad\) The double precision name is DUNDPR.

\section*{Description}

The discrete uniform PDF is defined for positive integers \(x\) in the range \(1, \ldots N, N>0\). It has the value \(y=f(x \mid N)=\frac{1}{N}, \quad 1 \leq x \leq N\), and \(y=0, \quad x>N\). Allowing values of \(x\) resulting in \(y=0, \quad x>N\) is a convenience.

\section*{Example}

In this example, we evaluate the discrete uniform probability density function at \(I X=3, N=5\).
```

 USE UMACH_INT
 USE UNDPR_INT
 IMPLICIT NONE
 INTEGER NOUT, IX, N
 REAL PR
 CALL UMACH(2, NOUT)
 IX = 3
 N = 5
 PR = UNDPR(IX, N)
 WRITE (NOUT, 99999) IX, N, PR
 99999 FORMAT (' UNDPR(', I2, ', ', I2, ') = ', F6.4)
END

```

Output
\(\operatorname{UNDPR}(3,5)=0.2000\)

\section*{AKS1DF}

This function evaluates the cumulative distribution function of the one-sided Kolmogorov-Smirnov goodness of fit \(D^{+}\)or \(D^{-}\)test statistic based on continuous data for one sample.

\section*{Function Return Value}

AKS1DF - The probability of a smaller D. (Output)

\section*{Required Arguments}

NOBS - The total number of observations in the sample. (Input)
\(D\) - The \(D^{+}\)or \(D^{-}\)test statistic. (Input)
\(D\) is the maximum positive difference of the empirical cumulative distribution function (CDF) minus the hypothetical CDF or the maximum positive difference of the hypothetical CDF minus the empirical CDF.

\section*{FORTRAN 90 Interface}

Generic: AKS1DF (NOBS, D)
Specific: The specific interface names are S_AKS1DF and D_AKS1DF.

\section*{FORTRAN 77 Interface}
```

Single: AKS1DF (NOBS, D)

```

Double: \(\quad\) The double precision name is DKS1DF.

\section*{Description}

Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided
Kolmogorov-Smirnov one-sample \(D^{+}\)or \(D^{-}\)statistic when the theoretical CDF is strictly continuous. Let \(F(x)\) denote the theoretical distribution function, and let \(S_{n}(x)\) denote the empirical distribution function obtained from a sample of size noBS. Then, the \(D^{+}\)statistic is computed as
\[
D^{+}=\sup _{x}\left[F(x)-S_{n}(x)\right]
\]
while the one-sided \(D^{-}\)statistic is computed as
\[
D^{-}=\sup _{x}\left[S_{n}(x)-F(x)\right]
\]

Exact probabilities are computed according to a method given by Conover (1980, page 350) for sample sizes of 80 or less. For sample sizes greater than 80 , Smirnov's asymptotic result is used, that is, the value of the CDF is taken as \(1-e^{-2 n d^{2}}\), where \(d\) is \(D^{+}\)or \(D^{-}\)(Kendall and Stuart, 1979, page 482). This asymptotic expression is conservative (the value returned by AKS1DF is smaller than the exact value, when the sample size exceeds 80).

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of AK21DF / DK21DF. The reference is:

AK2DF (NOBS, D, WK)
The additional argument is:
\(W K-\) Work vector of length 3 * NOBS +3 if NOBS \(\leq 80\). WK is not used if NOBS is greater than 80.
2. Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 2 & Since the \(D\) test statistic is less than zero, the distribution function is zero at \(D\). \\
1 & 3 & \begin{tabular}{l} 
Since the \(D\) test statistic is greater than one, the distribution function is one at \\
D.
\end{tabular}
\end{tabular}
3. If NOBS \(\leq 80\), then exact one-sided probabilities are computed. In this case, on the order of NOBS \({ }^{2}\) operations are required. For NOBS \(>80\), approximate one-sided probabilities are computed. These approximate probabilities require very few computations.
4. An approximate two-sided probability for the \(D=\max \left(D^{+}, D^{-}\right)\)statistic can be computed as twice the AKS1DF probability for \(D(\) minus one, if the probability from AKS1DF is greater than 0.5\()\).

\section*{Programming Notes}

Routine AKS1DF requires on the order of NOBS \({ }^{2}\) operations to compute the exact probabilities, where an operation consists of taking ten or so logarithms. Because so much computation is occurring within each "operation," AKS1DF is much slower than its two-sample counterpart, function AKS2DF.

\section*{Example}

In this example, the exact one-sided probabilities for the tabled values of \(D^{+}\)or \(D^{-}\), given, for example, in Conover (1980, page 462), are computed. Tabled values at the \(10 \%\) level of significance are used as input to AKS1DF for sample sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using the asymptotic critical values of
\[
1.07 / \sqrt{N O B S}
\]

The resulting probabilities should all be close to 0.90 .
```

USE UMACH_INT
USE AKS1DF_INT
IMPLICIT NONE

```
```

 INTEGER I, NOBS, NOUT
 REAL D(10)
 !
DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, \&
0.160, 0.151/
CALL UMACH (2, NOUT)
!
DO 10 I=1, 10
NOBS = 5*I
!
!
99999 FORMAT (' One-sided Probability for D = ', F8.3, ' with NOBS ' \&
, '= ', I2, ' is ', F8.4)
10 CONTINUE
END

```

\section*{Output}
```

One-sided Probability for D = 0.447 with NOBS = 5 is 0.9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0.9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0.9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0.9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0.9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0.8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0.9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0.8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0.9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0.9077

```

\section*{AKS2DF}

This function evaluates the cumulative distribution function of the Kolmogorov-Smirnov goodness of fit \(D\) test statistic based on continuous data for two samples.

\section*{Function Return Value}
\(A K S 2 D F\) - The probability of a smaller D. (Output)

\section*{Required Arguments}

NOBSX - The total number of observations in the first sample. (Input)
NOBSY - The total number of observations in the second sample. (Input)
\(D\) — The D test statistic. (Input)
\(D\) is the maximum absolute difference between empirical cumulative distribution functions (CDFs) of the two samples.

\section*{FORTRAN 90 Interface}

Generic: AKS2DF (NOBSX, NOBSY, D)
Specific: The specific interface names are S_AKS2DF and D_AKS2DF.

\section*{FORTRAN 77 Interface}

Single: AKS2DF (NOBSX, NOBSY, D)
Double: \(\quad\) The double precision name is DKS2DF.

\section*{Description}

Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided
Kolmogorov-Smirnov two-sample \(D\) statistic when the theoretical CDF is strictly continuous. Exact probabilities are computed according to a method given by Kim and Jennrich (1973). Approximate asymptotic probabilities are computed according to methods also given in this reference.

Let \(F_{n}(x)\) and \(G_{m}(x)\) denote the empirical distribution functions for the two samples, based on \(n=\) NOBSX and \(m=\) NOBSY observations. Then, the \(D\) statistic is computed as
\[
D=\sup _{x}\left|F_{n}(x)-G_{m}(x)\right|
\]

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of AK22DF / DK22DF. The reference is:

AK22DF (NOBSX, NOBSY, D, WK)
The additional argument is:
\(\boldsymbol{W K}\) - Work vector of length max(NOBSX, NOBSY) +1.

\section*{2. Informational errors}
\begin{tabular}{lll} 
Type & Code & Description \\
1 & 2 & \begin{tabular}{l} 
Since the \(D\) test statistic is less than zero, then the distribution function is \\
zero at \(D\).
\end{tabular} \\
1 & 3 & \begin{tabular}{l} 
Since the \(D\) test statistic is greater than one, then the distribution function is \\
one at D.
\end{tabular}
\end{tabular}

\section*{Programming Notes}

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact probabilities, where an operation consists of an addition and a multiplication. For NOBSX * NOBSY less than 10000, the exact probability is computed. If this is not the case, then the Smirnov approximation discussed by Kim and Jennrich (1973) is used if the minimum of NOBSX and NOBSY is greater than ten percent of the maximum of NOBSX and NOBSY, or if the minimum is greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich (1973) is used.

\section*{Example}

Function AKS2DF is used to compute the probability of a smaller \(D\) statistic for a variety of sample sizes using values close to the 0.95 probability value.
```

 USE UMACH_INT
 USE AKS2DF_INT
 IMPLICIT NONE
 INTEGER I, NOBSX(10), NOBSY(10), NOUT
 REAL D(10)
 DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
 DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
 DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &
 0.18, 0.18/
 CALL UMACH (2, NOUT)
 DO 10 I=1, 10
 WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I), &
 AKS2DF(NOBSX(I),NOBSY(I),D(I))
 FORMAT (' Probability for D = ', F5.3, ' with NOBSX = ', I3, &
 ' and NOBSY = ', I3, ' is ', F9.6, '.')
 CONTINUE
END

```
!
\(!\)
!
!
99999

\section*{Output}
```

Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.

```
```

Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

```

\section*{ALNDF}

This function evaluates the lognormal cumulative probability distribution function.

\section*{Function Return Value}

ALNDF - Function value, the probability that a standard lognormal random variable takes a value less than or equal to \(X\). (Output)

\section*{Required Arguments}
\(X\) - Argument for which the lognormal cumulative distribution function is to be evaluated. (Input)
\(A M U\) - Location parameter of the lognormal cumulative distribution function. (Input)
SIGMA - Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater than 0. (Input)

\section*{FORTRAN 90 Interface}

Generic: ALNDF (X, AMU, SIGMA)
Specific: \(\quad\) The specific interface names are S_ALNDF and D_ALNDF.

\section*{FORTRAN 77 Interface}

Single: ALNDF (X, AMU, SIGMA)
Double: \(\quad\) The double precision name is DLNDF.

\section*{Description}

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined as
\[
\begin{aligned}
& F(x \mid \mu, \sigma) \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{1}{t} e^{-\left(\frac{(\log (t)-\mu)^{2}}{2 \sigma^{2}}\right)} d t \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\log (x)} e^{-\left(\frac{u-\mu^{2}}{\sqrt{2} \sigma}\right)} d u
\end{aligned}
\]

\section*{Example}

In this example, we evaluate the probability distribution function at \(\mathrm{X}=0.7137, \mathrm{AMU}=0.0, \mathrm{SIGMA}=0.5\).
```

USE UMACH_INT
USE ALNDF_INT

```
```

 IMPLICIT NONE
 INTEGER NOUT
 REAL X, AMU, SIGMA, PR
 CALL UMACH(2, NOUT)
 X = . }713
 AMU = 0.0
 SIGMA = 0.5
 PR = ALNDF(X, AMU, SIGMA)
 WRITE (NOUT, 99999) X, AMU, SIGMA, PR
 99999 FORMAT (' ALNDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{ALNDF}(0.71,0.00,0.50)=0.2500\)

\section*{ALNIN}

This function evaluates the inverse of the lognormal cumulative probability distribution function.

\section*{Function Return Value}

ALNIN - Function value, the probability that a lognormal random variable takes a value less than or equal to the returned value is the input probability P. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the lognormal distribution function is to be evaluated. (Input)
\(A M U\) - Location parameter of the lognormal cumulative distribution function. (Input)
SIGMA - Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater than 0. (Input)

\section*{FORTRAN 90 Interface}

Generic: ALNIN (P, AMU, SIGMA)
Specific: The specific interface names are S_ALNIN and D_ALNIN.

\section*{FORTRAN 77 Interface}

Single: ALNIN (P, AMU, SIGMA)
Double: \(\quad\) The double precision name is DLNIN.

\section*{Description}

The function ALNIN evaluates the inverse distribution function of a lognormal random variable with location parameter AMU and scale parameter SIGMA. The probability that a standard lognormal random variable takes a value less than or equal to the returned value is \(P\).

\section*{Example}

In this example, we evaluate the inverse probability function at \(\mathrm{P}=0.25, \mathrm{AMU}=0.0, \mathrm{SIGMA}=0.5\).
```

USE UMACH_INT
USE ALNIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, SIGMA, P
CALL UMACH(2, NOUT)
P = . 25
AMU = 0.0
SIGMA = 0.5
X = ALNIN(P, AMU, SIGMA)
WRITE (NOUT, 99999) P, AMU, SIGMA, X

```
```

99999 FORMAT (' ALNIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)

```
    END

\section*{Output}

ALNIN ( \(0.250,0.00,0.50)=0.7137\)

\section*{ALNPR}

This function evaluates the lognormal probability density function.

\section*{Function Return Value}
\(A L N P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the lognormal probability density function is to be evaluated. (Input)
\(A M U\) - Location parameter of the lognormal probability function. (Input)
SIGMA - Shape parameter of the lognormal probability function. SIGMA must be greater than 0. (Input)

\section*{FORTRAN 90 Interface}

Generic: ALNPR (X, AMU, SIGMA)
Specific: The specific interface names are S_ALNPR and D_ALNPR.

\section*{FORTRAN 77 Interface}

Single: ALNPR (X, AMU, SIGMA)
Double: The double precision name is DLNPR.

\section*{Description}

The function ALNPR evaluates the lognormal probability density function, defined as
\[
f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\left(\frac{(\log (x)-\mu)^{2}}{2 \sigma^{2}}\right)}
\]

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=1.0, \mathrm{AMU}=0.0, \mathrm{SIGMA}=0.5\).
```

USE UMACH_INT
USE ALNPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, SIGMA, PR
CALL UMACH(2, NOUT)
X = 1.0
AMU = 0.0
SIGMA = 0.5

```
```

 PR = ALNPR(X, AMU, SIGMA)
 WRITE (NOUT, 99999) X, AMU, SIGMA, PR
 99999 FORMAT (' ALNPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output

ALNPR( \(1.00,0.00,0.50)=0.7979\)

\section*{ANORDF}

This function evaluates the standard normal (Gaussian) cumulative distribution function.

\section*{Function Return Value}

ANORDF - Function value, the probability that a normal random variable takes a value less than or equal to X . (Output)

\section*{Required Arguments}
\(X\) - Argument for which the normal cumulative distribution function is to be evaluated. (Input)

\section*{FORTRAN 90 Interface}

Generic: ANORDF (x)
Specific: The specific interface names are S_ANORDF and D_ANORDF.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & ANORDF (X) \\
Double: & The double precision name is DNORDF.
\end{tabular}

\section*{Description}

Function ANORDF evaluates the cumulative distribution function, \(\Phi\), of a standard normal (Gaussian) random variable, that is,
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
\]

The value of the distribution function at the point \(x\) is the probability that the random variable takes a value less than or equal to \(x\).

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0 and variance of 1 . The probability that a normal random variable with mean and variance \(\sigma^{2}\) is less than \(y\) is given by ANORDF evaluated at \((y-\mu) / \sigma\).
\(\Phi(x)\) is evaluated by use of the complementary error function, erfc. (See ERFC, IMSL MATH/LIBRARY Special Functions). The relationship is:
\[
\Phi(x)=\operatorname{erfc}(-x / \sqrt{2.0}) / 2
\]


Figure II.6-Standard Normal Distribution Function

\section*{Example}

Suppose \(X\) is a normal random variable with mean 100 and variance 225. In this example, we find the probability that \(X\) is less than 90 , and the probability that \(X\) is between 105 and 110 .
```

 USE UMACH_INT
 USE ANORDF_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL P, X1, X2
 !
CALL UMACH (2, NOUT)
X1 = (90.0-100.0)/15.0
P = ANORDF(X1)
WRITE (NOUT,99998) P
9 9 9 9 8 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ l e s s ~ t h a n ~ 9 0 ~ i s ~ ' , ~ F 6 . 4)
X1 = (105.0-100.0)/15.0
X2 = (110.0-100.0)/15.0
P = ANORDF (X2) - ANORDF(X1)
WRITE (NOUT,99999) P
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ b e t w e e n ~ 1 0 5 ~ a n d ~ 1 1 0 ~ i s ~ ' , ~ \& ~
F6.4)
END

```

\section*{Output}
```

The probability that X is less than 90 is 0.2525
The probability that X is between }105\mathrm{ and 110 is 0.1169

```

\section*{ANORIN}

This function evaluates the inverse of the standard normal (Gaussian) cumulative distribution function.

\section*{Function Return Value}

ANORIN - Function value. (Output)
The probability that a standard normal random variable takes a value less than or equal to ANORIN is P.

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the normal cumulative distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

\section*{FORTRAN 90 Interface}

Generic: ANORIN (P)
Specific: The specific interface names are S_ANORIN and D_ANORIN.

\section*{FORTRAN 77 Interface}

Single: ANORIN (P)
Double: \(\quad\) The double precision name is DNORIN.

\section*{Description}

Function ANORIN evaluates the inverse of the cumulative distribution function, \(\Phi\), of a standard normal (Gaussian) random variable, that is, \(\operatorname{ANORIN}(P)=\Phi^{-1}(p)\), where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
\]

The value of the distribution function at the point \(x\) is the probability that the random variable takes a value less than or equal to \(x\). The standard normal distribution has a mean of 0 and a variance of 1 .

\section*{Example}

In this example, we compute the point such that the probability is 0.9 that a standard normal random variable is less than or equal to this point.
```

USE UMACH_INT
USE ANORIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL P, X

```

CALL UMACH (2, NOUT)
\(P=0.9\)
\(\mathrm{X}=\mathrm{ANORIN}(\mathrm{P})\)
WRITE (NOUT, 99999) X
99999 FORMAT (' The 90th percentile of a standard normal is ', F6.4) END

\section*{Output}

The 90 th percentile of a standard normal is 1.2816

\section*{ANORPR}

This function evaluates the standard normal probability density function.

\section*{Function Return Value}
\(A N O R P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the normal probability density function is to be evaluated. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & ANORPR (X) \\
Specific: & The specific interface names are S_NORPR and D_NORPR.
\end{tabular}

\section*{FORTRAN 77 Interface}
```

Single: ANORPR (X)
Double: The double precision name is DNORPR.

```

\section*{Description}

The function ANORPR evaluates the normal probability density function, defined as
\[
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{x^{2}}{2}\right)}, \quad-\infty<x
\]

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=0.5\).
```

USE UMACH_INT
USE ANORPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, PR
CALL UMACH(2, NOUT)
X = 0.5
PR = ANORPR(X)
WRITE (NOUT, 99999) X, PR
99999 FORMAT (' ANORPR(', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{ANORPR}(0.50)=0.3521\)

\section*{BETDF}

This function evaluates the beta cumulative distribution function.

\section*{Function Return Value}

BETDF - Probability that a random variable from a beta distribution having parameters PIN and QIN will be less than or equal to x . (Output)

\section*{Required Arguments}
\(X\) - Argument for which the beta distribution function is to be evaluated. (Input)
PIN - First beta distribution parameter. (Input)
PIN must be positive.
QIN - Second beta distribution parameter. (Input)
QIN must be positive.

\section*{FORTRAN 90 Interface}

Generic: BETDF (X, PIN, QIN)
Specific: The specific interface names are S_BETDF and D_BETDF.

\section*{FORTRAN 77 Interface}

Single: BETDF (X, PIN, QIN)
Double: The double precision name is DBETDF.

\section*{Description}

Function BETDF evaluates the cumulative distribution function of a beta random variable with parameters PIN and QIN. This function is sometimes called the incomplete beta ratio and, with \(p=\operatorname{PIN}\) and \(q=Q I N\), is denoted by \(I_{x}(p, q)\). It is given by
\[
I_{x}(p, q)=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} \int_{0}^{x} t^{p-1}(1-t)^{q-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. The value of the distribution function \(I_{x}(p, q)\) is the probability that the random variable takes a value less than or equal to \(x\).

The integral in the expression above is called the incomplete beta function and is denoted by \(\beta_{x}(p, q)\). The constant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is denoted by \(\beta(p, q)\).

Function BETDF uses the method of Bosten and Battiste (1974).


Figure II.7-Beta Distribution Function

\section*{Comments}

Informational errors

\section*{Type Code Description}

1
1

2 Since the input argument \(x\) is greater than or equal to one, the distribution function is equal to one at x .

\section*{Example}

Suppose \(X\) is a beta random variable with parameters 12 and 12. ( \(X\) has a symmetric distribution.) In this example, we find the probability that \(X\) is less than 0.6 and the probability that \(X\) is between 0.5 and 0.6 . (Since \(X\) is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5 .)
```

USE UMACH_INT
USE BETDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL P, PIN, QIN, X
CALL UMACH (2, NOUT)
PIN = 12.0
QIN = 12.0
X=0.6
P = BETDF (X,PIN,QIN)
WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 0.6 is ', F6.4)
X = 0.5

```
!
```

 P = P - BETDF (X,PIN,QIN)
 WRITE (NOUT,99999) P
 99999 FORMAT (' The probability that X is between 0.5 and 0.6 is ', \&
F6.4)
END

```

\section*{Output}

The probability that \(X\) is less than 0.6 is 0.8364
The probability that \(X\) is between 0.5 and 0.6 is 0.3364

\section*{BETIN}

This function evaluates the inverse of the beta cumulative distribution function.

\section*{Function Return Value}

BETIN - Function value. (Output)
The probability that a beta random variable takes a value less than or equal to BETIN is P.

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the beta distribution function is to be evaluated. (Input) \(P\) must be in the open interval \((0.0,1.0)\).
PIN - First beta distribution parameter. (Input)
PIN must be positive.
QIN - Second beta distribution parameter. (Input)
QIN must be positive.

\section*{FORTRAN 90 Interface}

Generic: BETIN (P, PIN, QIN)
Specific: The specific interface names are S_BETIN and D_BETIN.

\section*{FORTRAN 77 Interface}

Single: BETIN (P, PIN, QIN)
Double: The double precision name is DBETIN.

\section*{Description}

The function BETIN evaluates the inverse distribution function of a beta random variable with parameters PIN and QIN, that is, with \(P=\mathrm{P}, p=\mathrm{PIN}\), and \(q=\mathrm{QIN}\), it determines \(x\) (equal to BETIN (P, PIN, QIN)), such that
\[
P=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} \int_{0}^{x} t^{p-1}(1-t)^{q-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(x\) is \(P\).

\section*{Comments}

Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 1 & \begin{tabular}{l} 
The value for the inverse Beta distribution could not be found in 100 itera- \\
tions. The best approximation is used.
\end{tabular}
\end{tabular}

\section*{Example}

Suppose \(X\) is a beta random variable with parameters 12 and 12. ( \(X\) has a symmetric distribution.) In this example, we find the value \(x_{0}\) such that the probability that \(X \leq x_{0}\) is 0.9 .
```

 USE UMACH_INT
 USE BETIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL P, PIN, QIN, X
 !
CALL UMACH (2, NOUT)
PIN = 12.0
QIN = 12.0
P=0.9
X = BETIN(P,PIN,QIN)
WRITE (NOUT,99999) X
99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.')
END

```

\section*{Output}
```

X is less than 0.6299 with probability 0.9.

```

\section*{BETPR}

This function evaluates the beta probability density function.

\section*{Function Return Value}

BETPR — Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the beta probability density function is to be evaluated. (Input)
PIN - First beta distribution parameter. (Input) PIN must be positive.
QIN - Second beta distribution parameter. (Input)
QIN must be positive.

\section*{FORTRAN 90 Interface}

Generic: BETPR (X, PIN, QIN)
Specific: The specific interface names are S_BETPR and D_BETPR.

\section*{FORTRAN 77 Interface}

Single: BETPR (X, PIN, QIN)
Double: The double precision name is DBETPR.

\section*{Description}

The function BETPR evaluates the beta probability density function with parameters PIN and QIN. Using \(x=\mathrm{X}, a=\mathrm{PIN}\) and \(b=\mathrm{QIN}\), the beta distribution is defined as
\[
f(x \mid a, b)=\frac{1}{B(a, b)}(1-x)^{b-1} x^{a-1}, \quad a, b>0, \quad 0 \leq x \leq 1
\]

The reciprocal of the beta function used as the normalizing factor is computed using IMSL function BETA (see Chapter 4, "Gamma Functions and Related Functions").

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=0.75, \mathrm{PIN}=2.0, \mathrm{QIN}=0.5\).
```

USE UMACH_INT
USE BETPR_INT
IMPLICIT NONE
INTEGER NOUT

```
```

 REAL X, PIN, QIN, PR
 CALL UMACH(2, NOUT)
 X = . 75
 PIN = 2.0
 QIN = 0.5
 PR = BETPR(X, PIN, QIN)
 WRITE (NOUT, 99999) X, PIN, QIN, PR
 99999 FORMAT (' BETPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
```

BETPR(0.75, 2.00, 0.50)=1.1250

```

\section*{BETNDF}

This function evaluates the noncentral beta cumulative distribution function (CDF).

\section*{Function Return Value}

BETNDF - Probability that a random variable from a beta distribution having shape parameters SHAPE1 and SHAPE2 and noncentrality parameter LAMBDA will be less than or equal to X . (Output)

\section*{Required Arguments}
\(X\) - Argument for which the noncentral beta cumulative distribution function is to be evaluated. (Input) x must be non-negative and less than or equal to 1 .
SHAPE1 - First shape parameter of the noncentral beta distribution. (Input) SHAPE1 must be positive.
SHAPE2 - Second shape parameter of the noncentral beta distribution. (Input) SHAPE2 must be positive.
LAMBDA - Noncentrality parameter. (Input) LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: BETNDF (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNDF and D_BETNDF.

\section*{Description}

The noncentral beta distribution is a generalization of the beta distribution. If \(Z\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(2 \alpha_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(2 \alpha_{2}\) degrees of freedom which is statistically independent of \(Z\), then
\[
X=\frac{Z}{Z+Y}=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
is a noncentral beta-distributed random variable and
\[
F=\frac{\alpha_{2} Z}{\alpha_{1} Y}=\frac{\alpha_{2} X}{\alpha_{1}(1-X)}
\]
is a noncentral \(F\)-distributed random variable. The CDF for noncentral beta variable \(X\) can thus be simply defined in terms of the noncentral \(F C D F\) :
\[
C D F_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)=C D F_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)
\]
where \(C D F_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)\) is a noncentral beta CDF with \(x=\mathrm{x}, \alpha_{1}=\) SHAPE1, \(\alpha_{2}=\) SHAPE 2 , and noncentrality parameter \(\lambda=\) LAMBDA; \(\operatorname{CDF}_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)\) is a noncentral \(F \operatorname{CDF}\) with argument \(f\), numerator and denominator degrees of freedom \(2 \alpha_{1}\) and \(2 \alpha_{2}\) respectively, and noncentrality parameter \(\lambda\) and:
\[
f=\frac{\alpha_{2}}{\alpha_{1}} \frac{x}{1-x} ; \quad x=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
(See documentation for function FNDF for a discussion of how the noncentral \(F\) CDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

\section*{Example}

This example traces out a portion of a noncentral beta distribution with parameters SHAPE1 \(=50\), SHAPE2 \(=5\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE BETNDF_INT
USE FNDF_INT
IMPLICIT NONE
INTEGER NOUT, I
REAL X, LAMBDA, SHAPE1, SHAPE2, \&
BCDFV, FCDFV, F(8)
DATA F / 0.0, 0.4, 0.8, 1.2, \&
1.6, 2.0, 2.8, 4.0 /
CALL UMACH (2, NOUT)
SHAPE1 = 50.0
SHAPE2 = 5.0
LAMBDA = 10.0
WRITE (NOUT,'(/" SHAPE1: ", F4.0, \&
\& "; SHAPE2: ", F4.0, \&
\&"; LAMBDA: ", F4.0 // \&
\& 6x,"X",6x,"NCBETCDF(X)",3x,"NCBETCDF(X)" / \&
\& 14x,"expected")') SHAPE1, SHAPE2, LAMBDA
DO I = 1, 8
X = (SHAPE1*F(I)) / (SHAPE1*F(I) + SHAPE2)
FCDFV = FNDF(F (I),2*SHAPE1,2*SHAPE2,LAMBDA)
BCDFV = BETNDF(X, SHAPE1, SHAPE2, LAMBDA)
WRITE (NOUT,'(2X, F8.6, 2(2X, E12.6))') \&
X, FCDFV, BCDFV
END DO
END

```

\section*{Output}
\begin{tabular}{cccc} 
SHAPE1: & \(50 . ; \quad\) SHAPE2: & \(5 . ; \quad\) LAMBDA: 10. \\
X & \begin{tabular}{c} 
NCBETCDF \((X)\) \\
expected
\end{tabular} & NCBETCDF (X) \\
0.000000 & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
0.800000 & \(0.488790 \mathrm{E}-02\) & \(0.488790 \mathrm{E}-02\) \\
0.888889 & \(0.202633 \mathrm{E}+00\) & \(0.202633 \mathrm{E}+00\) \\
0.923077 & \(0.521143 \mathrm{E}+00\) & \(0.521143 \mathrm{E}+00\) \\
0.941176 & \(0.733853 \mathrm{E}+00\) & \(0.733853 \mathrm{E}+00\) \\
0.952381 & \(0.850413 \mathrm{E}+00\) & \(0.850413 \mathrm{E}+00\) \\
0.965517 & \(0.947125 \mathrm{E}+00\) & \(0.947125 \mathrm{E}+00\) \\
0.975610 & \(0.985358 \mathrm{E}+00\) & \(0.985358 \mathrm{E}+00\)
\end{tabular}

\section*{BETNIN}

This function evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

\section*{Function Return Value}

BETNIN - Function value, the value of the inverse of the cumulative distribution function evaluated at \(P\). The probability that a noncentral beta random variable takes a value less than or equal to BETNIN is \(P\). (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the noncentral beta cumulative distribution function is to be evaluated. (Input) P must be non-negative and less than or equal to 1 .
SHAPE1 - First shape parameter of the noncentral beta distribution. (Input) SHAPE1 must be positive.
SHAPE2 - Second shape parameter of the noncentral beta distribution. (Input) SHAPE2 must be positive.
LAMBDA - Noncentrality parameter. (Input)
LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: BETNIN (P, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNIN and D_BETNIN.

\section*{Description}

The noncentral beta distribution is a generalization of the beta distribution. If \(Z\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(2 \alpha_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(2 \alpha_{2}\) degrees of freedom which is statistically independent of \(Z\), then
\[
X=\frac{Z}{Z+Y}=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
is a noncentral beta-distributed random variable and
\[
F=\frac{\alpha_{2} Z}{\alpha_{1} Y}=\frac{\alpha_{2} X}{\alpha_{1}(1-X)}
\]
is a noncentral \(F\)-distributed random variable. The CDF for noncentral beta variable \(X\) can thus be simply defined in terms of the noncentral \(F C D F\) :
\[
p=C D F_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)=C D F_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)
\]
where \(\mathrm{CDF}_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)\) is a noncentral beta CDF with \(x=\mathrm{x}, \alpha_{1}=\) SHAPE1, \(\alpha_{2}=\) SHAPE2, and noncentrality parameter \(\lambda=\operatorname{LAMBDA} ; \operatorname{CDF}_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)\) is a noncentral \(F \mathrm{CDF}\) with argument \(f\), numerator and denominator degrees of freedom \(2 \alpha_{1}\) and \(2 \alpha_{2}\) respectively, and noncentrality parameter \(\lambda ; p=\) the probability that \(F \leq f=\) the probability that \(X \leq x\) and:
\[
f=\frac{\alpha_{2}}{\alpha_{1}} \frac{x}{1-x} ; \quad x=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
(See the documentation for function FNDF for a discussion of how the noncentral \(F C D F\) is defined and calculated.) The correspondence between the arguments of function BETNIN (P, SHAPE1,SHAPE2,LAMBDA) and the variables in the above equations is as follows: \(\alpha_{1}=\) SHAPE1, \(\alpha_{2}=\) SHAPE \(2, \boldsymbol{\lambda}=\) LAMBDA, and \(p=\) P.

Function BETNIN evaluates
\[
x=C D F^{-1}{ }_{n c \beta}\left(p, \alpha_{1}, \alpha_{2}, \lambda\right)
\]
by first evaluating
\[
f=C D F_{n c F}^{-1}\left(p, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)
\]
and then solving for \(x\) using
\[
x=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
(See the documentation for function FNIN for a discussion of how the inverse noncentral \(F\) CDF is calculated.)

\section*{Example}

This example traces out a portion of an inverse noncentral beta distribution with parameters SHAPE1 \(=50\), SHAPE2 \(=5\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE BETNDF_INT
USE BETNIN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER :: NOUT, I
REAL :: SHAPE1 = 50.0, SHAPE2=5.0, LAMBDA=10.0
REAL :: X, CDF, CDFINV
REAL :: FO(8)=(/ 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /)
CALL UMACH (2, NOUT)
WRITE (NOUT,'(/" SHAPE1: ", F4.0, " SHAPE2: ", F4.0,'// \&
'" LAMBDA: ", F4.0 // ' // \&
'" X P = CDF(X) CDFINV(P)")') \&
SHAPE1, SHAPE2, LAMBDA

```
```

DO I = 1, 8
X = (SHAPE1*F0(I))/(SHAPE2 + SHAPE1*F0(I))
CDF = BETNDF(X, SHAPE1, SHAPE2, LAMBDA)
CDFINV = BETNIN(CDF, SHAPE1, SHAPE2, LAMBDA)
WRITE (NOUT,'(3(2X, E12.6))') X, CDF, CDFINV
END DO
END

```

\section*{Output}
\begin{tabular}{ccc} 
SHAPE1: 50. & SHAPE2: & 5. LAMBDA: 10. \\
\(X\) & \(\mathrm{P}=\mathrm{CDF}(\mathrm{X})\) & \(\mathrm{CDFINV}(\mathrm{P})\) \\
\(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
\(0.800000 \mathrm{E}+00\) & \(0.488791 \mathrm{E}-02\) & \(0.800000 \mathrm{E}+00\) \\
\(0.888889 \mathrm{E}+00\) & \(0.202633 \mathrm{E}+00\) & \(0.888889 \mathrm{E}+00\) \\
\(0.923077 \mathrm{E}+00\) & \(0.521144 \mathrm{E}+00\) & \(0.923077 \mathrm{E}+00\) \\
\(0.941176 \mathrm{E}+00\) & \(0.733853 \mathrm{E}+00\) & \(0.941176 \mathrm{E}+00\) \\
\(0.952381 \mathrm{E}+00\) & \(0.850413 \mathrm{E}+00\) & \(0.952381 \mathrm{E}+00\) \\
\(0.965517 \mathrm{E}+00\) & \(0.947125 \mathrm{E}+00\) & \(0.965517 \mathrm{E}+00\) \\
\(0.975610 \mathrm{E}+00\) & \(0.985358 \mathrm{E}+00\) & \(0.975610 \mathrm{E}+00\)
\end{tabular}

\section*{BETNPR}

This function evaluates the noncentral beta probability density function.

\section*{Function Return Value}

BETNPR - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the noncentral beta probability density function is to be evaluated. (Input) x must be non-negative and less than or equal to 1 .
SHAPE1 - First shape parameter of the noncentral beta distribution. (Input) SHAPE1 must be positive.
SHAPE2 - Second shape parameter of the noncentral beta distribution. (Input) SHAPE2 must be positive.
LAMBDA - Noncentrality parameter. (Input) LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: BETNPR (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNPR and D_BETNPR.

\section*{Description}

The noncentral beta distribution is a generalization of the beta distribution. If \(Z\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(2 \alpha_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(2 \alpha_{2}\) degrees of freedom which is statistically independent of \(Z\), then
\[
X=\frac{Z}{Z+Y}=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}}
\]
is a noncentral beta-distributed random variable and
\[
F=\frac{\alpha_{2} Z}{\alpha_{1} Y}=\frac{\alpha_{2} X}{\alpha_{1}(1-X)}
\]
is a noncentral \(F\)-distributed random variable. The PDF for noncentral beta variable \(X\) can thus be simply defined in terms of the noncentral \(F\) PDF:
\[
P D F_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)=P D F_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right) \frac{d f}{d x}
\]

Where \(P D F_{n c \beta}\left(x, \alpha_{1}, \alpha_{2}, \lambda\right)\) is a noncentral beta PDF with \(x=\mathrm{x}, \alpha_{1}=\) SHAPE1, \(\alpha_{2}=\) SHAPE2, and noncentrality parameter \(\lambda=\) LAMBDA; \(P D F_{n c F}\left(f, 2 \alpha_{1}, 2 \alpha_{2}, \lambda\right)\) is a noncentral \(F\) PDF with argument \(f\), numerator and denominator degrees of freedom \(2 \alpha_{1}\) and \(2 \alpha_{2}\) respectively, and noncentrality parameter \(\lambda\); and:
\[
\begin{aligned}
& f=\frac{\alpha_{2}}{\alpha_{1}} \frac{x}{1-x} ; \quad x=\frac{\alpha_{1} f}{\alpha_{1} f+\alpha_{2}} ; \\
& \frac{d f}{d x}=\frac{\left(\alpha_{2}+\alpha_{1} f\right)^{2}}{\alpha_{1} \alpha_{2}}=\frac{\alpha_{2}}{\alpha_{1}} \frac{1}{(1-x)^{2}}
\end{aligned}
\]
(See the documentation for function FNPR for a discussion of how the noncentral \(F\) PDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

\section*{Example}

This example traces out a portion of a noncentral beta distribution with parameters SHAPE1 = 50, SHAPE2 \(=5\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE BETNPR_INT
USE FNPR_INT
IMPLICIT NONE
INTEGER NOUT, I
REAL X, LAMBDA, SHAPE1, SHAPE2, \&
BPDFV, FPDFV, DBETNPR, DFNPR, F(8), \&
BPDFVEXPECT, DFDX
DATA F /0.0, 0.4, 0.8, 3.2, 5.6, 8.8, 14.0, 18.0/
CALL UMACH (2, NOUT)
SHAPE1 = 50.0
SHAPE2 = 5.0
LAMBDA = 10.0
WRITE (NOUT,'(/" SHAPE1: ", F4.0, "; SHAPE2: ", F4.0, "; '// \&
'LAMBDA: ", F4.0 // 6x,"X",6x,"NCBETPDF(X)",3x,"NCBETPDF'// \&
'(X)",/ 14x,"expected")') SHAPE1, SHAPE2, LAMBDA
DO I = 1, 8
X = (SHAPE1*F(I)) / (SHAPE1*F(I) + SHAPE2)
DFDX = (SHAPE2/SHAPE1) / (1.0 - X)**2
FPDFV = FNPR(F(I),2*SHAPE1,2*SHAPE2,LAMBDA)
BPDFVEXPECT = DFDX * FPDFV
BPDFV = BETNPR(X, SHAPE1, SHAPE2, LAMBDA)
WRITE (NOUT,'(2X, F8.6, 2(2X, E12.6))') X, BPDFVEXPECT, BPDFV
END DO
END

```

\section*{Output}
\begin{tabular}{cccc} 
SHAPE1: & \(50 . ; \quad\) SHAPE2: & \(5 . ; \quad\) LAMBDA: & 10. \\
X & \begin{tabular}{c} 
NCBETPDF \((X)\) \\
expected
\end{tabular} & NCBETPDF (X) \\
0.000000 & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
0.800000 & \(0.243720 \mathrm{E}+00\) & \(0.243720 \mathrm{E}+00\) \\
0.888889 & \(0.658624 \mathrm{E}+01\) & \(0.658624 \mathrm{E}+01\) \\
0.969697 & \(0.402367 \mathrm{E}+01\) & \(0.402365 \mathrm{E}+01\) \\
0.982456 & \(0.919544 \mathrm{E}+00\) & \(0.919542 \mathrm{E}+00\) \\
0.988764 & \(0.219100 \mathrm{E}+00\) & \(0.219100 \mathrm{E}+00\) \\
0.992908 & \(0.436654 \mathrm{E}-01\) & \(0.436647 \mathrm{E}-01\) & \\
0.994475 & \(0.175215 \mathrm{E}-01\) & \(0.175217 \mathrm{E}-01\) &
\end{tabular}

\section*{BNRDF}

This function evaluates the bivariate normal cumulative distribution function.

\section*{Function Return Value}
\(B N R D F\) - Function value, the probability that a bivariate normal random variable with correlation RHO takes a value less than or equal to X and less than or equal to Y . (Output)

\section*{Required Arguments}
\(X\) - One argument for which the bivariate normal distribution function is to be evaluated. (Input)
\(Y\) — The other argument for which the bivariate normal distribution function is to be evaluated. (Input) RHO - Correlation coefficient. (Input)

\section*{FORTRAN 90 Interface}

Generic: BNRDF (X, Y, RHO)
Specific: The specific interface names are S_BNRDF and D_BNRDF.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) BNRDF ( \(\mathrm{X}, \mathrm{Y}, \mathrm{RHO}\) )
Double: The double precision name is DBNRDF.

\section*{Description}

Function BNRDF evaluates the cumulative distribution function \(F\) of a bivariate normal distribution with means of zero, variances of one, and correlation of RHO; that is, with \(\rho=\) RHO, and \(|\rho|<1\),
\[
F(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{x} \int_{-\infty}^{y} \operatorname{xp}\left(-\frac{u^{2}-2 \rho u v+v^{2}}{2\left(1-\rho^{2}\right)}\right) d u d v
\]

To determine the probability that \(U \leq u_{0}\) and \(V \leq v_{0}\), where \((U, V)^{T}\) is a bivariate normal random variable with mean \(\mu=\left(\mu_{U}, \mu_{V}\right)^{T}\) and variance-covariance matrix
\[
\sum=\left(\begin{array}{cc}
\sigma_{U}^{2} & \sigma_{U V} \\
\sigma_{U V} & \sigma_{V}^{2}
\end{array}\right)
\]
transform \((U, V)^{T}\) to a vector with zero means and unit variances. The input to BNRDF would be \(\mathrm{X}=\left(u_{0}-\mu_{U}\right) / \sigma_{U}, \mathrm{Y}=\left(v_{0}-\mu_{V}\right) / \sigma_{V}\), and \(\rho=\sigma_{U V} /\left(\sigma_{U} \sigma_{V}\right)\).

Function BNRDF uses the method of Owen \((1962,1965)\). Computation of Owen's T-function is based on code by M. Patefield and D. Tandy (2000). For \(|\rho|=1\), the distribution function is computed based on the univariate statistic, \(Z=\min (x, y)\), and on the normal distribution function ANORDF.

\section*{Example}

Suppose \((X, Y)\) is a bivariate normal random variable with mean \((0,0)\) and variance-covariance matrix
\[
\left(\begin{array}{ll}
1.0 & 0.9 \\
0.9 & 1.0
\end{array}\right)
\]

In this example, we find the probability that \(X\) is less than -2.0 and \(Y\) is less than 0.0 .
```

 USE BNRDF_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL P, RHO, X, Y
 !
CALL UMACH (2, NOUT)
X = -2.0
Y = 0.0
RHO = 0.9
P = BNRDF(X,Y,RHO)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is less than -2.0 and Y ', \&
'is less than 0.0 is ', F6.4)
END

```

\section*{Output}
```

The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

```

\section*{CHIDF}

This function evaluates the chi-squared cumulative distribution function.

\section*{Function Return Value}

CHIDF - Function value, the probability that a chi-squared random variable takes a value less than or equal to CHSQ. (Output)

\section*{Required Arguments}

CHSQ - Argument for which the chi-squared distribution function is to be evaluated. (Input)
\(D F\) - Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be positive.

\section*{Optional Arguments}

COMPLEMENT - Logical. If .TRUE., the complement of the chi-squared cumulative distribution function is evaluated. If .FALSE., the chi-squared cumulative distribution function is evaluated. (Input) See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

\section*{FORTRAN 90 Interface}

Generic: CHIDF (CHSQ, DF [, ...])
Specific: The specific interface names are S_CHIDF and D_CHIDF.

\section*{FORTRAN 77 Interface}
```

Single: CHIDF (CHSQ, DF)

```

Double: The double precision name is DCHIDF.

\section*{Description}

Function CHIDF evaluates the cumulative distribution function, \(F\), of a chi-squared random variable with \(D F\) degrees of freedom, that is, with \(v=\mathrm{DF}\), and \(x=\mathrm{CHSQ}\),
\[
F(x, v)=\frac{1}{2^{v / 2} \Gamma(v / 2)} \int_{0}^{x} e^{-t / 2} t^{v / 2-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. The value of the distribution function at the point \(x\) is the probability that the random variable takes a value less than or equal to \(x\).

For \(v>v_{\max }=\{343\) for double precision, 171 for single precision \(\}\), CHIDF uses the Wilson-Hilferty approximation (Abramowitz and Stegun [A\&S] 1964, equation 26.4.17) for \(p\) in terms of the normal CDF, which is evaluated using function ANORDF.

For \(v \leq v_{\text {max }}\), CHIDF uses series expansions to evaluate \(p\) : for \(x<v\), CHIDF calculates \(p\) using A\&S series 6.5.29, and for \(x \geq v\), CHIDF calculates \(p\) using the continued fraction expansion of the incomplete gamma function given in A\&S equation 6.5.31.

If COMPLEMENT \(=. T R U E\). , the value of CHIDF at the point \(x\) is \(1-p\), where \(1-p\) is the probability that the random variable takes a value greater than \(x\). In those situations where the desired end result is \(1-p\), the user can achieve greater accuracy in the right tail region by using the result returned by CHIDF with the optional argument COMPLEMENT set to .TRUE. rather than by using \(1-p\) where \(p\) is the result returned by CHIDF with COMPLEMENT set to .FALSE..


Figure II. 8 - Chi-Squared Distribution Function

\section*{Comments}

Informational error
\begin{tabular}{lll} 
Type & Code & \begin{tabular}{l} 
Description \\
1
\end{tabular} \\
2 & 1 & \begin{tabular}{l} 
Since the input argument, CHSQ, is less than zero, the distribution function is \\
zero at CHSQ.
\end{tabular} \\
2 & 3 & \begin{tabular}{l} 
The normal distribution is used for large degrees of freedom. However, it \\
has produced underflow. Therefore, the probability, CHIDF, is set to zero.
\end{tabular}
\end{tabular}

\section*{Example}

Suppose \(X\) is a chi-squared random variable with 2 degrees of freedom. In this example, we find the probability that \(X\) is less than 0.15 and the probability that \(X\) is greater than 3.0.
```

USE CHIDF_INT
USE UMACH_INT
IMPLICIT NONE

```
```

 INTEGER NOUT
 REAL CHSQ, DF, P
 CALL UMACH (2, NOUT)
 DF = 2.0
 CHSQ = 0.15
 P = CHIDF (CHSQ,DF)
 WRITE (NOUT,99998) P
 99998 FORMAT (' The probability that chi-squared with 2 df is less ', \&
'than 0.15 is ', F6.4)
CHSQ = 3.0
P = CHIDF(CHSQ,DF, complement=.true.)
WRITE (NOUT,99999) P
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ c h i - s q u a r e d ~ w i t h ~ 2 ~ d f ~ i s ~ g r e a t e r ~ ' ~ \& ~
, 'than 3.0 is ', F6.4)
END

```

\section*{Output}
```

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

```

\section*{CHIIN}

This function evaluates the inverse of the chi-squared cumulative distribution function.

\section*{Function Return Value}

CHIIN - Function value. (Output)
The probability that a chi-squared random variable takes a value less than or equal to CHIIN is P.

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the chi-squared distribution function is to be evaluated. (Input) P must be in the open interval ( \(0.0,1.0\) ).
\(D F\) - Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

\section*{FORTRAN 90 Interface}

Generic: CHIIN (P, DF)
Specific: The specific interface names are S_CHIIN and D_CHIIN.

\section*{FORTRAN 77 Interface}
```

Single: CHIIN (P, DF)
Double: The double precision name is DCHIIN.

```

\section*{Description}

Function CHIIN evaluates the inverse distribution function of a chi-squared random variable with DF degrees of freedom, that is, with \(P=\mathrm{P}\) and \(\nu=\mathrm{DF}\), it determines \(x\) (equal to \(\mathrm{CHIIN}(\mathrm{P}, \mathrm{DF})\) ), such that
\[
P=\frac{1}{2^{v / 2} \Gamma(v / 2)} \int_{0}^{x} e^{-t / 2} t^{v / 2-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(x\) is \(P\).

For \(v<40\), CHIIN uses bisection (if \(v \leq 2\) or \(P>0.98\) ) or regula falsi to find the point at which the chi-squared distribution function is equal to \(P\). The distribution function is evaluated using routine CHIDF.

For \(40 \leq v<100\), a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to the normal distribution is used, and routine ANORIN is used to evaluate the inverse of the normal distribution function. For \(v \geq 100\), the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

\section*{Comments}

Informational error

\section*{Type Code Description}
\(4 \quad 1\)
Over 100 iterations have occurred without convergence. Convergence is assumed.

\section*{Example}

In this example, we find the 99-th percentage points of a chi-squared random variable with 2 degrees of freedom and of one with 64 degrees of freedom.
```

 USE UMACH_INT
 USE CHIIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL DF, P, X
 !
CALL UMACH (2, NOUT)
P = 0.99
DF = 2.0
X = CHIIN(P,DF)
WRITE (NOUT,99998) X
99998 FORMAT (' The 99-th percentage point of chi-squared with 2 df ' \&
, 'is ', F7.3)
DF = 64.0
X = CHIIN(P,DF)
WRITE (NOUT,99999) X
99999 FORMAT (' The 99-th percentage point of chi-squared with 64 df ' \&
, 'is ', F7.3)
END

```

\section*{Output}
```

The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

```

\section*{CHIPR}

This function evaluates the chi-squared probability density function.

\section*{Function Return Value}

CHIPR - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the chi-squared probability density function is to be evaluated. (Input)
\(\boldsymbol{D F}\) - Number of degrees of freedom of the chi-squared distribution. (Input)

\section*{FORTRAN 90 Interface}

Generic: CHIPR (X, DF)
Specific: \(\quad\) The specific interface names are S_CHIPR and D_CHIPR.
```

FORTRAN 77 Interface
Single: \quad CHIPR (X, DF)
Double: The double precision name is DCHIPR.

```

\section*{Description}

The function CHIPR evaluates the chi-squared probability density function. The chi-squared distribution is a special case of the gamma distribution and is defined as
\[
f(x \mid v)=\Gamma(x \mid v / 2,2)=\frac{1}{2^{v / 2} \Gamma(v / 2)}(x)^{v / 2-1} e^{-\frac{x}{2}}, \quad x, v>0
\]

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=3.0, \mathrm{DF}=5.0\).
USE UMACH_INT
USE CHIPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, DF, PR
CALL UMACH (2, NOUT)
\(X=3.0\)
\(\mathrm{DF}=5.0\)
\(\mathrm{PR}=\operatorname{CHIPR}(\mathrm{X}, \mathrm{DF})\)
WRITE (NOUT, 99999) X, DF, PR
99999 FORMAT (' \(\operatorname{CHIPR}(', F 4.2, \quad\) ', ', F4.2, ') \(=\) ', F6.4)
END

Output
```

CHIPR(3.00,5.00)=0.1542

```

\section*{CSNDF}

This function evaluates the noncentral chi-squared cumulative distribution function.

\section*{Function Return Value}

CSNDF - Function value, the probability that a noncentral chi-squared random variable takes a value less than or equal to CHSQ. (Output)

\section*{Required Arguments}

CHSQ - Argument for which the noncentral chi-squared cumulative distribution function is to be evaluated. (Input)
\(D F-N u m b e r\) of degrees of freedom of the noncentral chi-squared cumulative distribution. (Input) DF must be positive and less than or equal to 200,000.
ALAM - The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

\section*{FORTRAN 90 Interface}

Generic: CSNDF (CHSQ, DF, ALAM)
Specific: The specific interface names are S_CSNDF and D_CSNDF.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & CSNDF (CHSQ, DF, ALAM) \\
Double: & The double precision name is DCSNDF.
\end{tabular}

\section*{Description}

Function CSNDF evaluates the cumulative distribution function of a noncentral chi-squared random variable with DF degrees of freedom and noncentrality parameter ALAM, that is, with \(\boldsymbol{v}=\mathrm{DF}, \boldsymbol{\lambda}=\mathrm{ALAM}\), and \(x=\mathrm{CHSQ}\),
\[
F(x \mid v, \lambda)=\sum_{i=0}^{\infty} \frac{e^{-\lambda / 2}(\lambda / 2)^{i}}{i!} \int_{0}^{x} \frac{t^{(v+2 i) / 2-1} e^{-t / 2}}{2^{(v+2 i) / 2 \Gamma\left(\frac{v+2 i}{2}\right)}} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. This is a series of central chi-squared distribution functions with Poisson weights. The value of the distribution function at the point \(x\) is the probability that the random variable takes a value less than or equal to \(x\).

The noncentral chi-squared random variable can be defined by the distribution function above, or alternatively and equivalently, as the sum of squares of independent normal random variables. If \(Y_{i}\) have independent normal distributions with means \(\mu_{i}\) and variances equal to one and
\[
X=\sum_{i=1}^{n} Y_{i}^{2}
\]
then \(X\) has a noncentral chi-squared distribution with \(n\) degrees of freedom and noncentrality parameter equal to
\[
\sum_{i=1}^{n} \mu_{i}^{2}
\]

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums forward and backward from that point, terminating when the additional terms are sufficiently small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-squared distribution functions.


Figure 11.9 - Noncentral Chi-squared Distribution Function

\section*{Example}

In this example, CSNDF is used to compute the probability that a random variable that follows the noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of freedom is less than or equal to 8.642 .
```

USE UMACH_INT
USE CSNDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL ALAM, CHSQ, DF, P

```
```

!
CALL UMACH (2, NOUT)
DF = 2.0
ALAM = 1.0
CHSQ = 8.642
P = CSNDF (CHSQ,DF,ALAM)
WRITE (NOUT,99999) P
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ a ~ n o n c e n t r a l ~ c h i - s q u a r e d ~ r a n d o m ' , ~ \& ~
/, ' variable with 2 df and noncentrality 1.0 is less', \&
/, ' than 8.642 is ', F5.3)
END

```

\section*{Output}
```

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

```

\section*{CSNIN}

This function evaluates the inverse of the noncentral chi-squared cumulative function.

\section*{Function Return Value}

CSNIN - Function value. (Output)
The probability that a noncentral chi-squared random variable takes a value less than or equal to CSNIN is \(P\).

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the noncentral chi-squared cumulative distribution function is to be evaluated. (Input) P must be in the open interval \((0.0,1.0)\).
\(D F\) - Number of degrees of freedom of the noncentral chi-squared distribution. (Input) DF must be greater than or equal to 0.5 and less than or equal to 200,000 .
ALAM - The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

\section*{FORTRAN 90 Interface}

Generic: CSNIN (P, DF, ALAM)
Specific: \(\quad\) The specific interface names are S_CSNIN and D_CSNIN.

\section*{FORTRAN 77 Interface}

Single:
CSNIN (P, DF, ALAM)
Double: The double precision name is DCSNIN.

\section*{Description}

Function CSNIN evaluates the inverse distribution function of a noncentral chi-squared random variable with DF degrees of freedom and noncentrality parameter ALAM; that is, with \(P=P, v=D F\), and \(\lambda=A L A M\), it determines \(c_{0}(=\) CSNIN ( \(\left.P, ~ D F, ~ A L A M)\right)\), such that
\[
P=\sum_{i=0}^{\infty} \frac{e^{-\lambda / 2}(\lambda / 2)^{i}}{i!} \int_{0}^{c_{0}} \frac{x^{(v+2 i) / 2-1} e^{-x / 2}}{2^{(v+2 i) / 2} \Gamma\left(\frac{v+2 i}{2}\right)} d x
\]
where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(c_{0}\) is \(P\).

Function CSNIN uses bisection and modified regula falsi to invert the distribution function, which is evaluated using routine CSNDF. See CSNDF for an alternative definition of the noncentral chi-squared random variable in terms of normal random variables.

\section*{Comments}

Informational error

\section*{Type Code Description}
\(4 \quad 1\)
Over 100 iterations have occurred without convergence. Convergence is assumed.

\section*{Example}

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 degrees of freedom and noncentrality parameter 1.
```

 USE CSNIN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL ALAM, CHSQ, DF, P
 !
CALL UMACH (2, NOUT)
DF = 2.0
ALAM = 1.0
P = 0.95
CHSQ = CSNIN(P,DF,ALAM)
WRITE (NOUT,99999) CHSQ
!
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ 0 . 0 5 ~ n o n c e n t r a l ~ c h i - s q u a r e d ~ c r i t i c a l ~ v a l u e ~ i s ~ ' , ~ \& ~
F6.3, '.')
!
END

```

\section*{Output}
```

The 0.05 noncentral chi-squared critical value is 8.642.

```

\section*{CSNPR}

This function evaluates the noncentral chi-squared probability density function.

\section*{Function Return Value}

CSNPR - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the noncentral chi-squared probability density function is to be evaluated. (Input) \(X\) must be non-negative.
\(D F\) - Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be positive.
\(L A M B D A\) - Noncentrality parameter. (Input)
LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: CSNPR (X, DF, LAMBDA)
Specific: The specific interface names are S_CSNPR and D_CSNPR.

\section*{Description}

The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If \(\left\{X_{i}\right\}\) are \(k\) independent, normally distributed random variables with means \(\mu_{i}\) and variances \(\sigma_{i}^{2}\), then the random variable:
\[
X=\sum_{i=1}^{k}\left(\frac{X_{i}}{\sigma_{i}}\right)^{2}
\]
is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has two parameters: \(k\) which specifies the number of degrees of freedom (i.e. the number of \(X_{i}\) ), and \(\lambda\) which is related to the mean of the random variables \(X_{i}\) by:
\[
\lambda=\sum_{i=1}^{k}\left(\frac{\mu_{i}}{\sigma_{i}}\right)^{2}
\]

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with \(k+2 i\) degrees of freedom, where \(i\) is the value of a Poisson distributed random variable with parameter \(\lambda / 2\). Thus, the probability density function is given by:
\[
\mathrm{F}(x, k, \lambda)=\sum_{i=0}^{\infty} \frac{e^{-\lambda / 2}(\lambda / 2)^{i}}{i!} f(x, k+2 i)
\]
where the (central) chi-squared \(\operatorname{PDF} f(x, k)\) is given by:
\[
f(x, k)=\frac{(x / 2)^{k / 2} e^{-x / 2}}{x \Gamma(k / 2)} \text { for } x>0, \text { else } 0
\]
where \(\Gamma(\cdot)\) is the gamma function. The above representation of \(\mathrm{F}(x, k, \lambda)\) can be shown to be equivalent to the representation:
\[
\begin{aligned}
\mathrm{F}(x, k, \lambda) & =\frac{e^{-(\lambda+x) / 2}(x / 2)^{k / 2}}{x} \sum_{i=0}^{\infty} \phi_{i} \\
\phi_{i} & =\frac{(\lambda x / 4)^{i}}{i!\Gamma(k / 2+i)}
\end{aligned}
\]

Function CSNPR ( \(\mathrm{X}, \mathrm{DF}\), LAMBDA) evaluates the probability density function of a noncentral chi-squared random variable with DF degrees of freedom and noncentrality parameter LAMBDA, corresponding to \(k=\mathrm{DF}\), \(\lambda=\) LAMBDA, and \(x=\mathrm{X}\).

Function CSNDF ( \(\mathrm{X}, \mathrm{DF}\), LAMBDA) evaluates the cumulative distribution function incorporating the above probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-squared distribution.

\section*{Example}

This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom and noncentrality parameter \(\boldsymbol{\lambda}=40\).
```

USE UMACH_INT
USE CSNPR_INT
IMPLICIT NONE
INTEGER :: NOUT, I
REAL :: X(6)=(/ 0.0, 8.0, 40.0, 136.0, 280.0, 400.0 /)
REAL :: LAMBDA=40.0, DF=100.0, PDFV
CALL UMACH (2, NOUT)
WRITE (NOUT,'(//"DF: ", F4.0, " LAMBDA: ", F4.0 //'// \&
' " X PDF(X)")') DF, LAMBDA
DO I = 1, 6
PDFV = CSNPR(X(I), DF, LAMBDA)

```

WRITE (NOUT,'(1X, F5.0, 2X, E12.5)') X(I), PDFV END DO END

\section*{Output}
```

DF: 100. LAMBDA: 40.
X PDF(X)
0. 0.00000E+00
8. 0.00000E+00
40. 0.34621E-13
136. 0.21092E-01
280. 0.40027E-09
400. 0.11250E-21

```

\section*{EXPDF}

This function evaluates the exponential cumulative distribution function.

\section*{Function Return Value}

EXPDF - Function value, the probability that an exponential random variable takes a value less than or equal to \(X\). (Output)

\section*{Required Arguments}
\(X\) - Argument for which the exponential cumulative distribution function is to be evaluated. (Input)
\(B\) - Scale parameter of the exponential distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXPDF (x, B)
Specific: The specific interface names are S_EXPDF and D_EXPDF.

\section*{FORTRAN 77 Interface}

Single: EXPDF (X, B)
Double: The double precision name is DEXPDF.

\section*{Description}

The function EXPDF evaluates the exponential cumulative distribution function (CDF), defined:
\[
F(x \mid b)=\int_{0}^{x} f(t \mid b) d t=1-e^{-\frac{x}{b}}
\]
where
\[
f(x \mid b)=\frac{1}{b} e^{-\frac{x}{b}}
\]
is the exponential probability density function (PDF).

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=2.0, \mathrm{~B}=1.0\).
```

USE UMACH INT
USE EXPDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR

```
```

 CALL UMACH(2, NOUT)
 X = 2.0
 B = 1.0
 PR = EXPDF(X, B)
 WRITE (NOUT, 99999) X, B, PR
 99999 FORMAT (' EXPDF(', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{EXPDF}(2.00,1.00)=0.8647\)

\section*{EXPIN}

This function evaluates the inverse of the exponential cumulative distribution function.

\section*{Function Return Value}

EXPIN - Function value, the value of the inverse of the cumulative distribution function. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the exponential distribution function is to be evaluated. (Input)
\(\boldsymbol{B}\) - Scale parameter of the exponential distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXPIN (P, B)
Specific: The specific interface names are S_EXPIN and D_EXPIN.
```

FORTRAN 77 Interface
Single: EXPIN (P, B)
Double: The double precision name is DEXPIN.

```

\section*{Description}

The function EXPIN evaluates the inverse distribution function of an exponential random variable with scale parameter \(b=\mathrm{B}\).

\section*{Example}

In this example, we evaluate the inverse probability function at \(\mathrm{P}=0.8647, \mathrm{~B}=1.0\).
```

USE UMACH_INT
USE EXPIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, P
CALL UMACH(2, NOUT)
P = 0.8647
B = 1.0
X = EXPIN(P, B)
WRITE (NOUT, 99999) P, B, X
99999 FORMAT (' EXPIN(', F6.4, ', ', F4.2, ') = ', F6.4)
END

```

Output
```

$\operatorname{EXPIN}(0.8647,1.00)=2.0003$

```

\section*{EXPPR}

This function evaluates the exponential probability density function.

\section*{Function Return Value}

EXPPR - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the exponential probability density function is to be evaluated. (Input)
\(\boldsymbol{B}\) - Scale parameter of the exponential probability density function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXPPR (x, B)
Specific: The specific interface names are S_EXPPR and D_EXPPR.

\section*{FORTRAN 77 Interface \\ Single: \\ EXPPR (X, B) \\ Double: The double precision name is DEXPPR.}

\section*{Description}

The function EXPPR evaluates the exponential probability density function. The exponential distribution is a special case of the gamma distribution and is defined as
\[
f(x \mid b)=\Gamma(x \mid 1, b)=\frac{1}{b} e^{\frac{-x}{b}}, \quad x, b>0
\]

This relationship is used in the computation of \(f(x \mid b)\).

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=2.0, \mathrm{~B}=1.0\).
```

USE UMACH_INT
USE EXPPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR
CALL UMACH(2, NOUT)
X = 2.0
B = 1.0
PR = EXPPR(X, B)

```
        WRITE (NOUT, 99999) \(\mathrm{X}, \mathrm{B}, \mathrm{PR}\)
99999 FORMAT (' \(\operatorname{EXPPR}(', F 4.2, \quad\) ', ', F4.2, ') = ', F6.4)
    END

Output
\(\operatorname{EXPPR}(2.00,1.00)=0.1353\)

\section*{EXVDF}

This function evaluates the extreme value cumulative distribution function

\section*{Function Return Value}
\(E X V D F\) - Function value, the probability that an extreme value random variable takes a value less than or equal to \(X\). (Output)

\section*{Required Arguments}
\(X\) - Argument for which the extreme value cumulative distribution function is to be evaluated. (Input)
\(A M U\) - Location parameter of the extreme value probability distribution function. (Input)
\(B E T A\) - Scale parameter of the extreme value probability distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXVDF (X, AMU, BETA)
Specific: The specific interface names are S_EXVDF and D_EXVDF.

\section*{FORTRAN 77 Interface}

Single: EXVDF (X, AMU, BETA)
Double: \(\quad\) The double precision name is DEXVDF.

\section*{Description}

The function EXVDF evaluates the extreme value cumulative distribution function, defined as
\[
F(x \mid \mu, \beta)=1-e^{-\mathrm{e}^{\frac{x-\mu}{\beta}}}
\]

The extreme value distribution is also known as the Gumbel minimum distribution.

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=1.0, \mathrm{AMU}=0.0, \mathrm{BETA}=1.0\).
```

USE UMACH_INT
USE EXVDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH(2, NOUT)
X = 1.0
AMU = 0.0
B = 1.0

```
```

 PR = EXVDF(X, AMU, B)
 WRITE (NOUT, 99999) X, AMU, B, PR
 99999 FORMAT (' EXVDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{EXVDF}(1.00,0.00,1.00)=0.9340\)

\section*{EXVIN}

This function evaluates the inverse of the extreme value cumulative distribution function.

\section*{Function Return Value}

EXVIN - Function value, the value of the inverse of the extreme value cumulative distribution function. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) — Probability for which the inverse of the extreme value distribution function is to be evaluated. (Input) \(A M U\) - Location parameter of the extreme value probability function. (Input)
BETA - Scale parameter of the extreme value probability function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXVIN (P, AMU, BETA)
Specific: The specific interface names are S_EXVIN and D_EXVIN.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & EXVIN (P, AMU, BETA) \\
Double: & The double precision name is DEXVIN.
\end{tabular}

\section*{Description}

The function EXVIN evaluates the inverse distribution function of an extreme value random variable with location parameter AMU and scale parameter BETA.

\section*{Example}

In this example, we evaluate the inverse probability function at \(P=0.934, \mathrm{AMU}=1.0, \mathrm{BETA}=1.0\)
```

USE UMACH_INT
USE EXVIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH (2, NOUT)
PR = . 934
AMU = 0.0
B = 1.0
X = EXVIN(PR, AMU, B)
WRITE (NOUT, 99999) PR, AMU, B, X
99999 FORMAT (' EXVIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{EXVIN}(0.934,0.00,1.00)=0.9999\)

\section*{EXVPR}

This function evaluates the extreme value probability density function.

\section*{Function Return Value}
\(E X V P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the extreme value probability density function is to be evaluated. (Input)
\(A M U\) - Location parameter of the extreme value probability density function. (Input)
BETA - Scale parameter of the extreme value probability density function. (Input)

\section*{FORTRAN 90 Interface}

Generic: EXVPR (X, AMU, BETA)
Specific: The specific interface names are S_EXVPR and D_EXVPR.

\section*{FORTRAN 77 Interface}
Single: EXVPR (X, AMU, BETA)

Double: \(\quad\) The double precision name is DEXVPR.

\section*{Description}

The function EXVPR evaluates the extreme value probability density function, defined as
\[
f(x \mid \mu, \beta)=\beta^{-1} e^{\frac{x-\mu}{\beta}} e^{-e^{\frac{x-\mu}{\beta}}},-\infty<x, \mu<+\infty, \beta>0
\]

The extreme value distribution is also known as the Gumbel minimum distribution.

\section*{Example}

In this example, we evaluate the extreme value probability density function at \(\mathrm{X}=2.0, \mathrm{AMU}=0.0, \mathrm{BETA}=1.0\).
```

USE UMACH_INT
USE EXVPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH(2, NOUT)
X = -2.0
AMU = 0.0
B = 1.0
PR = EXVPR(X, AMU, B)
WRITE (NOUT, 99999) X, AMU, B, PR

```
```

99999 FORMAT (' EXVPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
```

EXVPR(-2.00, 0.00, 1.00) = 0.1182

```

\section*{FDF}

This function evaluates the \(F\) cumulative distribution function.

\section*{Function Return Value}

FDF - Function value, the probability that an \(F\) random variable takes a value less than or equal to the input \(F\). (Output)

\section*{Required Arguments}
\(F\) - Argument for which the \(F\) cumulative distribution function is to be evaluated. (Input)
DFN - Numerator degrees of freedom. (Input) DFN must be positive.
\(D F D\) - Denominator degrees of freedom. (Input) DFD must be positive.

\section*{Optional Arguments}

COMPLEMENT - Logical. If .TRUE., the complement of the \(F\) cumulative distribution function is evaluated. If .FALSE., the \(F\) cumulative distribution function is evaluated. (Input) See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

\section*{FORTRAN 90 Interface}

Generic: \(\quad \operatorname{FDF}(F, \operatorname{DFN}, \operatorname{DFD}[, \ldots])\)
Specific: The specific interface names are S_FDF and D_FDF.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) FDF (F, DFN, DFD)
Double: The double precision name is DFDF.

\section*{Description}

Function FDF evaluates the distribution function of a Snedecor's \(F\) random variable with DFN numerator degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then using the routine BETDF. If \(X\) is an \(F\) variate with \(v_{1}\) and \(v_{2}\) degrees of freedom and \(Y=v_{1} X /\left(v_{2}+v_{1} X\right)\), then \(Y\) is a beta variate with parameters \(p=v_{1} / 2\) and \(q=v_{2} / 2\). The function FDF also uses a relationship between \(F\) random variables that can be expressed as follows.
```

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)

```

If COMPLEMENT \(=\). TRUE. , the value of FDF at the point \(x\) is \(1-p\), where \(1-p\) is the probability that the random variable takes a value greater than \(x\). In those situations where the desired end result is \(1-p\), the user can achieve greater accuracy in the right tail region by using the result returned by FDF with the optional argument COMPLEMENT set to .TRUE. rather than by using \(1-p\) where \(p\) is the result returned by FDF with COMPLEMENT set to .FALSE . .


Figure II.IO-F Distribution Function

\section*{Comments}

Informational error
Type Code Description

13
Since the input argument F is not positive, the distribution function is zero at F.

\section*{Example}

In this example, we find the probability that an \(F\) random variable with one numerator and one denominator degree of freedom is greater than 648.
```

USE UMACH_INT
USE FDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL DFD, DFN, F, P
CALL UMACH (2, NOUT)
F}=648.
DFN = 1.0
DFD = 1.0
P = FDF (F,DFN,DFD, COMPLEMENT=.TRUE.)

```

WRITE (NOUT,99999) P
99999 FORMAT (' The probability that an \(\mathrm{F}(1,1)\) variate is greater ', \& 'than 648 is ', F6.4)
END

\section*{Output}

The probability that an \(F(1,1)\) variate is greater than 648 is 0.0250

This function evaluates the inverse of the \(F\) cumulative distribution function.

\section*{Function Return Value}

FIN - Function value. (Output) The probability that an \(F\) random variable takes a value less than or equal to FIN is P.

\section*{Required Arguments}
\(P\) - Probability for which the inverse of the \(F\) distribution function is to be evaluated. (Input) P must be in the open interval ( \(0.0,1.0\) ).
DFN - Numerator degrees of freedom. (Input) DFN must be positive.
DFD - Denominator degrees of freedom. (Input) DFD must be positive.

\section*{FORTRAN 90 Interface}

Generic: FIN (P, DFN, DFD)
Specific: The specific interface names are S_FDF and D_FDF.

\section*{FORTRAN 77 Interface}

\author{
Single: FIN (P, DFN, DFD) \\ Double: The double precision name is DFDF.
}

\section*{Description}

Function FIN evaluates the inverse distribution function of a Snedecor's \(F\) random variable with DFN numerator degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then using the routine BETIN. If \(X\) is an \(F\) variate with \(v_{1}\) and \(v_{2}\) degrees of freedom and \(Y=v_{1} X /\left(v_{2}+v_{1} X\right)\), then \(Y\) is a beta variate with parameters \(p=v_{1} / 2\) and \(q=v_{2} / 2\). If \(P \leq 0.5\), FIN uses this relationship directly, otherwise, it also uses a relationship between \(F\) random variables that can be expressed as follows, using routine FDF, which is the \(F\) cumulative distribution function:
```

FDF(F,DFN,DFD) = 1.0 - FDF (1.0/F,DFD,DFN).

```

\section*{Comments}

Informational error

\section*{Type Code \\ Description}
\(4 \quad 4\)
FIN is set to machine infinity since overflow would occur upon modifying the inverse value for the \(F\) distribution with the result obtained from the inverse beta distribution.

\section*{Example}

In this example, we find the 99-th percentage point for an \(F\) random variable with 1 and 7 degrees of freedom.
```

 USE UMACH_INT
 USE FIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL DFD, DFN, F, P
 CALL UMACH (2, NOUT)
 P = 0.99
 DFN = 1.0
 DFD = 7.0
 F = FIN (P,DFN,DFD)
 WRITE (NOUT,99999) F
 99999 FORMAT (' The F(1,7) 0.01 critical value is ', F6.3)
END

```
!

\section*{Output}

The \(F(1,7) 0.01\) critical value is 12.246

\section*{FPR}

This function evaluates the \(F\) probability density function.

\section*{Function Return Value}

FPR - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(F\) - Argument for which the \(F\) probability density function is to be evaluated. (Input)
DFN - Numerator degrees of freedom. (Input)
DFN must be positive.
DFD - Denominator degrees of freedom. (Input)
DFD must be positive.

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) FPR (F, DFN, DFD)
Specific: The specific interface names are S_FPR and D_FDPR

\section*{FORTRAN 77 Interface}

Single: \(\quad\) FPR (F, DFN, DFD)
Double: \(\quad\) The double precision name is DFPR.

\section*{Description}

The function FPR evaluates the F probability density function, defined as
\[
\begin{aligned}
& f\left(x \mid v_{1}, v_{2}\right)=n\left(v_{1}, v_{2}\right) x^{\frac{v_{1}-2}{2}}\left(1+\frac{v_{1} x}{v_{2}}\right)^{\frac{-\left(v_{1}+v_{2}\right)}{2}}, \\
& n\left(v_{1}, v_{2}\right)=\frac{\Gamma\left(\frac{v_{1}+v_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}}, \quad x>0, v_{i}>0, \quad i=1,2
\end{aligned}
\]

The parameters \(v_{1}\) and \(v_{2}\) correspond to the arguments DFN and DFD.

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{F}=2.0, \mathrm{DFN}=10.0, \mathrm{DFD}=1.0\).
```

USE UMACH_INT
USE FPR_INT
IMPLICIT NONE

```
```

 INTEGER NOUT
 REAL F, DFN, DFD, PR
 CALL UMACH(2, NOUT)
 F = 2.0
 DFN = 10.0
 DFD = 1.0
 PR = FPR(F, DFN, DFD)
 WRITE (NOUT, 99999) F, DFN, DFD, PR
 99999 FORMAT (' FPR(', F6.2, ', ', F6.2, ', ', F6.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{FPR}(2.00,10.00,1.00)=0.1052\)

\section*{FNDF}

This function evaluates the noncentral \(F\) cumulative distribution function (CDF).

\section*{Function Return Value}
\(F N D F\) - Probability that a random variable from an \(F\) distribution having noncentrality parameter LAMBDA takes a value less than or equal to the input \(F\). (Output)

\section*{Required Arguments}
\(F\) - Argument for which the noncentral \(F\) cumulative distribution function is to be evaluated. (Input) F must be non-negative.
DF1 - Number of numerator degrees of freedom of the noncentral \(F\) distribution. (Input) DF1 must be positive.
DF2 - Number of denominator degrees of freedom of the noncentral \(F\) distribution. (Input) DF2 must be positive.
LAMBDA - Noncentrality parameter. (Input)
LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: FNDF (F, DF1, DF2, LAMBDA)
Specific: \(\quad\) The specific interface names are S_FNDF and D_FNDF.

\section*{Description}

If \(X\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(v_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(v_{2}\) degrees of freedom which is statistically independent of \(X\), then
\[
F=\left(X / v_{1}\right) /\left(Y / v_{2}\right)
\]
is a noncentral \(F\)-distributed random variable whose CDF is given by
\[
C D F\left(f, v_{1}, v_{2}, \lambda\right)=\sum_{j=0}^{\infty} c_{j}
\]
where
\[
\begin{gathered}
c_{j}=\omega_{j} I_{x}\left(\frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right) \\
\omega_{j}=e^{-\lambda / 2}(\lambda / 2)^{j} / j!=\frac{\lambda}{2 j} \omega_{j-1}
\end{gathered}
\]
\[
\begin{gathered}
I_{x}(a, b)=B_{x}(a, b) / B(a, b) \\
B_{x}(a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t=x^{a} \sum_{j=0}^{\infty} \frac{\Gamma(j+1-b)}{(a+j) \Gamma(1-b) j!} x^{j} \\
x=v_{1} f /\left(v_{2}+v_{1} f\right) \\
B(a, b)=B_{1}(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \\
I_{x}(a+1, b)=I_{x}(a, b)-T_{x}(a, b) \\
T_{x}(a, b)=\frac{\Gamma(a+b)}{\Gamma(a+1) \Gamma(b)} x^{a}(1-x)^{b}=T_{x}(a-1, b) \frac{a-1+b}{a} x
\end{gathered}
\]
and \(\Gamma(\cdot)\) is the gamma function. The above series expansion for the noncentral \(F\) CDF was taken from Butler and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:
\[
I_{x}(a+1, b)=I_{x}(a, b)-T_{x}(a, b)
\]
extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and Bhattacharjee (1973).

The correspondence between the arguments of function FNDF ( \(\mathrm{F}, \mathrm{DF} 1, \mathrm{DF} 2\), LAMBDA) and the variables in the above equations is as follows: \(\mathrm{V}_{1}=\mathrm{DF} 1, \mathrm{~V}_{2}=\mathrm{DF} 2, \lambda=\) LAMBDA, and \(f=\mathrm{F}\).

For \(\lambda=0\), the noncentral \(F\) distribution is the same as the \(F\) distribution.

\section*{Example}

This example traces out a portion of a noncentral \(F\) distribution with parameters DF1 \(=100, \mathrm{DF} 2=10\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE FNDF_INT
IMPLICIT NONE
INTEGER NOUT, I
REAL X, LAMBDA, DF1, DF2, CDFV, X0 (8)
DATA X0 / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /
CALL UMACH (2, NOUT)
DF1 = 100.0
DF2 = 10.0
LAMBDA = 10.0

```
```

WRITE (NOUT,'("DF1: ", F4.0, "; DF2: ", F4.0, \&
"; LAMBDA: ", F4.0 // " X CDF(X)")')\&
DF1, DF2, LAMBDA
DO I = 1, 8
X = X0(I)
CDFV = FNDF(X, DF1, DF2, LAMBDA)
WRITE (NOUT,'(1X, F5.1, 2X, E12.6)') X, CDFV
END DO
END

```

\section*{Output}
```

DF1: 100.; DF2: 10.; LAMBDA: 10.
X CDF (X)
0.0 0.000000E+00
0.4 0.488790E-02
0.8 0.202633E+00
1.2 0.521143E+00
1.6 0.733853E+00
2.0 0.850413E+00
2.8 0.947125E+00
4.0 0.985358E+00

```

\section*{FNIN}

This function evaluates the inverse of the noncentral \(F\) cumulative distribution function (CDF).

\section*{Function Return Value}

FNIN - Function value, the value of the inverse of the cumulative distribution function evaluated at P . The probability that a noncentral \(F\) random variable takes a value less than or equal to FNIN is P. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the noncentral \(F\) cumulative distribution function is to be evaluated. (Input) P must be non-negative and less than 1 .
DF1 - Number of numerator degrees of freedom of the noncentral \(F\) distribution. (Input) DF1 must be positive.
DF2 - Number of denominator degrees of freedom of the noncentral \(F\) distribution. (Input) DF2 must be positive.
LAMBDA - Noncentrality parameter. (Input)
LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: FNIN (P, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNIN and D_FNIN.

\section*{Description}

If \(X\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(v_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(v_{2}\) degrees of freedom which is statistically independent of \(X\), then
\[
F=\left(X / v_{1}\right) /\left(Y / v_{2}\right)
\]
is a noncentral \(F\)-distributed random variable whose CDF is given by
\[
p=C D F\left(f, v_{1}, v_{2}, \lambda\right)=\sum_{j=0}^{\infty} c_{j}
\]
where:
\[
c_{j}=\omega_{j} I_{x}\left(\frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
\]
\[
\begin{gathered}
\omega_{j}=e^{-\lambda / 2}(\lambda / 2)^{j} / j!=\frac{\lambda}{2 j} \omega_{j-1} \\
I_{x}(a, b)=B_{x}(a, b) / B(a, b) \\
B_{x}(a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t=x^{a} \sum_{j=0}^{\infty} \frac{\Gamma(j+1-b)}{(a+j) \Gamma(1-b) j!} x^{j} \\
x=v_{1} f /\left(v_{2}+v_{1} f\right) \\
B(a, b)=B_{1}(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \\
I_{x}(a+1, b)=I_{x}(a, b)-T_{x}(a, b) \\
T_{x}(a, b)=\frac{\Gamma(a+b)}{\Gamma(a+1) \Gamma(b)} x^{a}(1-x)^{b}=T_{x}(a-1, b) \frac{a-1+b}{a} x
\end{gathered}
\]
and \(\Gamma(\cdot)\) is the gamma function, and \(p=C D F(f)\) is the probability that \(F \leq f\). The correspondence between the arguments of function FNIN ( \(\mathrm{P}, \mathrm{DF} 1, \mathrm{DF} 2, \mathrm{LAMBDA}\) ) and the variables in the above equations is as follows: \(\mathrm{V}_{1}=\mathrm{DF} 1, \mathrm{~V}_{2}=\mathrm{DF} 2, \lambda=\mathrm{LAMBDA}\), and \(p=\mathrm{P}\).

Function FNIN evaluates
\[
f=C D F^{-1}\left(p, v_{1}, v_{1}, \lambda\right)
\]

Function FNIN uses bisection and modified regula falsi search algorithms to invert the distribution function \(C D F(f)\), which is evaluated using function FNDF. For sufficiently small \(p\), an accurate approximation of \(C D F^{-1}(p)\) can be used which requires no such inverse search algorithms.

\section*{Example}

This example traces out a portion of an inverse noncentral \(F\) distribution with parameters \(\mathrm{DF} 1=100, \mathrm{DF} 2=10\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE FNDF_INT
USE FNIN_INT
IMPLICIT NONE
INTEGER NOUT, I

```
```

REAL F, LAMBDA, DF1, DF2, CDF, CDFINV,F0(8)
DATA FO / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /
CALL UMACH (2, NOUT)
DF1 = 100.0
DF2 = 10.0
LAMBDA = 10.0
WRITE (NOUT,'("DF1: ", F4.0, "; DF2: ", F4.0, \&
"; LAMBDA: ", F4.0 // " F P = CDF(F) CDFINV(P)")')\&
DF1, DF2, LAMBDA
DO I = 1, 8
F = F0(I)
CDF = FNDF(F, DF1, DF2, LAMBDA)
CDFINV = FNIN(CDF, DF1, DF2, LAMBDA)
WRITE (NOUT,'(1X, F5.1, 2(2X, E12.6))') F, CDF, CDFINV
END DO
END

```

\section*{Output}


\section*{FNPR}

This function evaluates the noncentral \(F\) probability density function.

\section*{Function Return Value}
\(F N P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(F\) - Argument for which the noncentral \(F\) probability density function is to be evaluated. (Input) F must be non-negative.
DF1 - Number of numerator degrees of freedom of the noncentral \(F\) distribution. (Input) DF1 must be positive.
DF2 - Number of denominator degrees of freedom of the noncentral \(F\) distribution. (Input) DF2 must be positive.
LAMBDA - Noncentrality parameter. (Input) LAMBDA must be non-negative.

\section*{FORTRAN 90 Interface}

Generic: FNPR (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNPR and D_FNPR.

\section*{Description}

If \(X\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(v_{1}\) degrees of freedom, and \(Y\) is a chi-square random variable with \(v_{2}\) degrees of freedom which is statistically independent of \(X\), then
\[
F=\left(X / v_{1}\right) /\left(Y / v_{2}\right)
\]
is a noncentral \(F\)-distributed random variable whose PDF is given by
\[
\operatorname{PDF}\left(f, v_{1}, v_{2}, \lambda\right)=\Psi \sum_{k=0}^{\infty} \Phi_{k}
\]
where
\[
\Psi=\frac{e^{-\lambda / 2}\left(v_{1} f\right)^{v_{1} / 2}\left(v_{2}\right)^{v_{2} / 2}}{f\left(v_{1} f+v_{2}\right)^{\left(v_{1}+v_{2}\right)^{2}} \Gamma\left(v_{2} / 2\right)}
\]
\[
\begin{gathered}
\Phi_{k}=\frac{R^{k} \Gamma\left(\frac{v_{1}+v_{2}}{2}+k\right)}{k!\Gamma\left(\frac{v_{1}}{2}+k\right)} \\
R=\frac{\lambda v_{1} f}{2\left(v_{1} f+v_{2}\right)}
\end{gathered}
\]
and \(\Gamma(\cdot)\) is the gamma function, \(\mathrm{V}_{1}=\mathrm{DF} 1, \mathrm{~V}_{2}=\mathrm{DF} 2, \lambda=\mathrm{LAMBDA}\), and \(f=\mathrm{F}\).
With a noncentrality parameter of zero, the noncentral \(F\) distribution is the same as the \(F\) distribution.
The efficiency of the calculation of the above series is enhanced by:
- calculating each term \(\Phi_{k}\) in the series recursively in terms of either the term \(\Phi_{k-1}\) preceding it or the term \(\Phi_{k+1}\) following it, and
- initializing the sum with the largest series term and adding the subsequent terms in order of decreasing magnitude.

\section*{Special cases:}

For \(R=\lambda f=0\) :
\[
\operatorname{PDF}\left(f, v_{1}, v_{2}, \lambda\right)=\Psi \Phi_{0}=\Psi \frac{\Gamma\left(\left[v_{1}+v_{2}\right] / 2\right)}{\Gamma\left(v_{1} / 2\right)}
\]

For \(\lambda=0\) :
\[
\operatorname{PDF}\left(f, v_{1}, v_{2}, \lambda\right)=\frac{\left(v_{1} f\right)^{v_{1} / 2}\left(v_{2}\right)^{v_{2} / 2} \Gamma\left(\left[v_{1}+v_{2}\right] / 2\right)}{f\left(v_{1} f+v_{2}\right)^{\left(v_{1}+v_{2}\right)^{2}} \Gamma\left(v_{1} / 2\right) \Gamma\left(v_{2} / 2\right)}
\]

For \(f=0\) :
\[
\operatorname{PDF}\left(f, v_{1}, v_{2}, \lambda\right)=\frac{\left.e^{-\lambda / 2} f^{v_{1} / 2-1}\left(v_{1} / v_{2}\right)^{v_{1} / 2} \Gamma\left(\left[v_{1}+v_{2}\right]\right) / 2\right)}{\Gamma\left(v_{1} / 2\right) \Gamma\left(v_{2} / 2\right)}=\left\{\begin{array}{l}
0 \text { if } v_{1}>2 \\
e^{-\lambda / 2} \text { if } v_{1}=2 \\
\infty \text { if } v_{1}<2
\end{array}\right.
\]

\section*{Example}

This example traces out a portion of a noncentral \(F\) distribution with parameters DF1 \(=100, D F 2=10\), and LAMBDA \(=10\).
```

USE UMACH_INT
USE FNPR_INT
IMPLICIT NONE

```
```

INTEGER NOUT, I
REAL F, LAMBDA, DF1, DF2, PDFV, X0(8)
DATA X0 /0.0, 0.4, 0.8, 3.2, 5.6.8.8, 14.0, 18.0/
CALL UMACH (2, NOUT)
DF1 = 100.0
DF2 = 10.0
LAMBDA = 10.0
WRITE (NOUT,'("DF1: ", F4.0, "; DF2: ", F4.0, "; LAMBDA'// \&
': ",F4.0 //" F PDF(F)")') DF1, DF2, LAMBDA
DO I = 1, 8
F = X0(I)
PDFV = FNPR(F, DF1, DF2, LAMBDA)
WRITE (NOUT,'(1X, F5.1, 2X, E12.6)') F, PDFV
END DO
END

```

\section*{Output}
```

DF1: 100.; DF2: 10.; LAMBDA: 10.
F PDF(F)
0.0 0.000000E+00
0.4 0.974879E-01
0.8 0.813115E+00
3.2 0.369482E-01
5.6 0.283023E-02
8.8 0.276607E-03
14.0 0.219632E-04
18.0 0.534831E-05

```

\section*{GAMDF}

This function evaluates the gamma cumulative distribution function.

\section*{Function Return Value}

GAMDF - Function value, the probability that a gamma random variable takes a value less than or equal to X . (Output)

\section*{Required Arguments}
\(X\) - Argument for which the gamma distribution function is to be evaluated. (Input)
\(A\) - The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

\section*{FORTRAN 90 Interface}

Generic: GAMDF ( \(\mathrm{X}, \mathrm{A}\) )
Specific: The specific interface names are S_GAMDF and D_GAMDF.

\section*{FORTRAN 77 Interface}
```

Single: GAMDF (X, A)

```

Double: \(\quad\) The double precision name is DGAMDF.

\section*{Description}

Function GAMDF evaluates the distribution function, \(F\), of a gamma random variable with shape parameter \(a\); that is,
\[
F(x)=\frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. (The gamma function is the integral from 0 to \(\infty\) of the same integrand as above). The value of the distribution function at the point \(x\) is the probability that the random variable takes a value less than or equal to \(x\).

The gamma distribution is often defined as a two-parameter distribution with a scale parameter \(b\) (which must be positive), or even as a three-parameter distribution in which the third parameter \(c\) is a location parameter. In the most general case, the probability density function over \((c, \infty)\) is
\[
f(t)=\frac{1}{b^{a} \Gamma(a)} e^{-(t-c) / b}(x-c)^{a-1}
\]

If \(T\) is such a random variable with parameters \(a, b\), and \(c\), the probability that \(T \leq t_{0}\) can be obtained from GAMDF by setting \(X=\left(t_{0}-c\right) / b\).

If x is less than \(a\) or if x is less than or equal to 1.0 , GAMDF uses a series expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)


Figure II.II - Gamma Distribution Function

\section*{Comments}

Informational error

\section*{Type Code Description}
\(1 \quad 2\)
Since the input argument x is less than zero, the distribution function is set to zero.

\section*{Example}

Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an Erlang distribution since the shape parameter is an integer.) In this example, we find the probability that X is less than 0.5 and the probability that \(X\) is between 0.5 and 1.0.
```

USE UMACH_INT
USE GAMDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL A, P, X
CALL UMACH (2, NOUT)
A = 4.0
X = 0.5
P = GAMDF (X,A)
WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 0.5 is ', F6.4)
X = 1.0
P = GAMDF (X,A) - P

```

WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 1.0 is ', \& F6.4)
END

\section*{Output}

The probability that X is less than 0.5 is 0.0018
The probability that \(X\) is between 0.5 and 1.0 is 0.0172

\section*{GAMIN}

This function evaluates the inverse of the gamma cumulative distribution function.

\section*{Function Return Value}

GAMIN - Function value. (Output)
The probability that a gamma random variable takes a value less than or equal to GAMIN is \(P\).

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the gamma cumulative distribution function is to be evaluated. (Input)
P must be in the open interval \((0.0,1.0)\).
\(A\) - The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

\section*{FORTRAN 90 Interface}

Generic: GAMIN (P, A)
Specific: The specific interface names are S_GAMIN and D_GAMIN.

\section*{FORTRAN 77 Interface}
```

Single: GAMIN (P, A)

```

Double: \(\quad\) The double precision name is DGAMIN.

\section*{Description}

Function GAMIN evaluates the inverse distribution function of a gamma random variable with shape parameter \(a\), that is, it determines \(x(=\operatorname{GAMIN}(\mathrm{P}, \mathrm{A}))\), such that
\[
P=\frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t
\]
where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(x\) is \(P\). See the documentation for routine GAMDF for further discussion of the gamma distribution.

Function GAMIN uses bisection and modified regula falsi to invert the distribution function, which is evaluated using routine GAMDF.

\section*{Comments}

Informational error

\section*{Type Code Description}
\(4 \quad 1\)
Over 100 iterations have occurred without convergence. Convergence is assumed.

\section*{Example}

In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.
```

 USE UMACH_INT
 USE GAMIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL A, P, X
 !
CALL UMACH (2, NOUT)
A = 4.0
P = 0.95
X = GAMIN(P,A)
WRITE (NOUT,99999) X
!
99999 FORMAT (' The 0.05 gamma(4) critical value is ', F6.3, \&
'.')
!
END

```

\section*{Output}
```

The 0.05 gamma(4) critical value is 7.754.

```

\section*{GAMPR}

This function evaluates the gamma probability density function.

\section*{Function Return Value}
\(G A M P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the gamma probability density function is to be evaluated. (Input)
\(A\) - The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

\section*{FORTRAN 90 Interface}

Generic: GAMPR (X, A)
Specific: The specific interface names are S_GAMPR and D_GAMPR.

\section*{FORTRAN 77 Interface}

Single:
GAMPR (X, A)
Double: The double precision name is DGAMPR.

\section*{Description}

The function GAMPR evaluates the gamma probability density function, defined as
\[
\Gamma(x \mid a)=\frac{1}{\Gamma(a)}(x)^{a-1} e^{-x}, \quad x, a>0
\]

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=4.0, \mathrm{~A}=5.0\).
```

USE UMACH_INT
USE GAMPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, PR
CALL UMACH(2, NOUT)
X = 4.0
A = 5.0
PR = GAMPR(X, A)
WRITE (NOUT, 99999) X, A, PR
99999 FORMAT (' GAMPR(', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{GAMPR}(4.00,5.00)=0.1954\)

\section*{RALDF}

This function evaluates the Rayleigh cumulative distribution function.

\section*{Function Return Value}

RALDF - Function value, the probability that a Rayleigh random variable takes a value less than or equal to X. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Rayleigh cumulative distribution function is to be evaluated. (Input)
ALPHA - Scale parameter of the Rayleigh cumulative distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: RALDF (X, ALPHA)
Specific: The specific interface names are S_RALDF and D_RALDF.

\section*{FORTRAN 77 Interface}

Single:
RALDF ( \(\mathrm{X}, \mathrm{ALPHA}\) )
Double: \(\quad\) The double precision name is DRALDF.

\section*{Description}

The function RALDF evaluates the Rayleigh cumulative probability distribution function, which is a special case of the Weibull cumulative probability distribution function, where the shape parameter GAMMA is 2.0
\[
F(x)=1-e^{\frac{x^{2}}{2 \alpha^{2}}}
\]

RALDF evaluates the Rayleigh cumulative probability distribution function using the relationship
RALDF (X, ALPHA) \(=\) WBLDF (X, SQRT (2.0) *ALPHA, 2.0) .

\section*{Example}

In this example, we evaluate the Rayleigh cumulative distribution function at \(\mathrm{X}=0.25\), \(\mathrm{ALPHA}=0.5\).
```

USE UMACH_INT
USE RALDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, ALPHA, PR
CALL UMACH (2, NOUT)
X = 0. 25
ALPHA = 0.5

```
```

 PR = RALDF(X, ALPHA)
 WRITE (NOUT, 99999) X, ALPHA, PR
 99999 FORMAT (' RALDF(', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{RALDF}(0.25,0.50)=0.1175\)

\section*{RALIN}

This function evaluates the inverse of the Rayleigh cumulative distribution function.

\section*{Function Return Value}

RALIN - Function value, the value of the inverse of the cumulative distribution function. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the Rayleigh distribution function is to be evaluated. (Input) ALPHA - Scale parameter of the Rayleigh cumulative distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: RALIN (P, ALPHA)
Specific: The specific interface names are S_RALIN and D_RALIN.

\section*{FORTRAN 77 Interface}

Single:
RALIN (P, ALPHA)
Double: \(\quad\) The double precision name is DRALIN.

\section*{Description}

The function RALIN evaluates the inverse distribution function of a Rayleigh random variable with scale parameter ALPHA.

\section*{Example}

In this example, we evaluate the inverse probability function at \(\mathrm{P}=0.1175\), \(\operatorname{ALPHA}=0.5\).
```

USE UMACH_INT
USE RALIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, ALPHA, P
CALL UMACH(2, NOUT)
P = 0.1175
ALPHA = 0.5
X = RALIN(P, ALPHA)
WRITE (NOUT, 99999) P, ALPHA, X
99999 FORMAT (' RALIN(', F6.4, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}

RALIN \((0.1175,0.50)=0.2500\)

\section*{RALPR}

This function evaluates the Rayleigh probability density function.

\section*{Function Return Value}
\(R A L P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Rayleigh probability density function is to be evaluated. (Input)
ALPHA - Scale parameter of the Rayleigh probability function. (Input)

\section*{FORTRAN 90 Interface}

Generic: RALPR (X, ALPHA)
Specific: The specific interface names are S_RALPR and D_RALPR.

\section*{FORTRAN 77 Interface}

Single:
RALPR (X, ALPHA)
Double: The double precision name is DRALPR.

\section*{Description}

The function RALPR evaluates the Rayleigh probability density function, which is a special case of the Weibull probability density function where GAMMA is equal to 2.0 , and is defined as
\[
f(x \mid \alpha)=\frac{x}{\alpha^{2}} e^{-\left(\frac{x^{2}}{2 \alpha^{2}}\right)}, x>0
\]

\section*{Example}

In this example, we evaluate the Rayleigh probability density function at \(\mathrm{X}=0.25, \mathrm{ALPHA}=0.5\).
```

USE UMACH_INT
USE RALPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, ALPHA, PR
CALL UMACH(2, NOUT)
X = 0.25
ALPHA = 0.5
PR = RALPR(X, ALPHA)
WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALPR(', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{RALPR}(0.25,0.50)=0.8825\)

\section*{TDF}

This function evaluates the Student's \(t\) cumulative distribution function.

\section*{Function Return Value}

TDF - Function value, the probability that a Student's \(t\) random variable takes a value less than or equal to the input T . (Output)

\section*{Required Arguments}
\(T\) - Argument for which the Student's \(t\) distribution function is to be evaluated. (Input)
\(D F\) - Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

\section*{Optional Arguments}

COMPLEMENT - Logical. If .TRUE., the complement of the Student's \(t\) cumulative distribution function is evaluated. If .FALSE., the Student's \(t\) cumulative distribution function is evaluated. (Input) See the Description section for further details on the use of COMPLEMENT. Default: COMPLEMENT = .FALSE..

\section*{FORTRAN 90 Interface}

Generic: TDF (T, DF \([, \ldots]\) )
Specific: The specific interface names are S_TDF and D_TDF.

\section*{FORTRAN 77 Interface}

Single: TDF (T, DF)
Double: \(\quad\) The double precision name is DTDF.

\section*{Description}

Function TDF evaluates the cumulative distribution function of a Student's \(t\) random variable with DF degrees of freedom. If the square of \(T\) is greater than or equal to \(D F\), the relationship of a \(t\) to an \(F\) random variable (and subsequently, to a beta random variable) is exploited, and routine BETDF is used. Otherwise, the method described by Hill (1970) is used. Let \(v=D F\). If \(v\) is not an integer, if \(v\) is greater than 19 , or if \(v\) is greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If \(v\) is less than 20 and \(\operatorname{ABS}(\mathrm{T})\) is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges well for large values of \(T\) is used.

If COMPLEMENT \(=\). TRUE., the value of TDF at the point \(x\) is \(1-p\), where \(1-p\) is the probability that the random variable takes a value greater than \(x\). In those situations where the desired end result is \(1-p\), the user can achieve greater accuracy in the right tail region by using the result returned by TDF with the optional argument COMPLEMENT set to .TRUE. rather than by using \(1-p\) where \(p\) is the result returned by TDF with COMPLEMENT set to .FALSE..


Figure II. 12 - Student's t Distribution Function

\section*{Example}

In this example, we find the probability that a \(t\) random variable with 6 degrees of freedom is greater in absolute value than 2.447. We use the fact that \(t\) is symmetric about 0 .
```

 USE TDF_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL DF, P, T
 CALL UMACH (2, NOUT)
 T = 2.447
 DF=6.0
 P = 2.0*TDF(-T,DF)
 WRITE (NOUT,99999) P
 99999 FORMAT (' The probability that a t(6) variate is greater ', \&
'than 2.447 in', /, ' absolute value is ', F6.4)
END

```
!

\section*{Output}
```

The probability that a t(6) variate is greater than 2.447 in absolute value is 0.0500

```

This function evaluates the inverse of the Student's \(t\) cumulative distribution function.

\section*{Function Return Value}

TIN - Function value. (Output)
The probability that a Student's \(t\) random variable takes a value less than or equal to TIN is \(P\).

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the Student's \(t\) cumulative distribution function is to be evaluated. (Input) P must be in the open interval \((0.0,1.0)\).
DF - Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

\section*{FORTRAN 90 Interface}
```

 Generic: TIN (P, DF)
 Specific: The specific interface names are S_TIN and D_TIN.
    ```

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & TIN (P, DF) \\
Double: & The double precision name is DTIN.
\end{tabular}

\section*{Description}

Function TIN evaluates the inverse distribution function of a Student's \(t\) random variable with DF degrees of freedom. Let \(v=\mathrm{DF}\). If \(v\) equals 1 or 2 , the inverse can be obtained in closed form, if \(v\) is between 1 and 2 , the relationship of a \(t\) to a beta random variable is exploited and routine BETIN is used to evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small values of \(v\) greater than 2, Hill's algorithm inverts an integrated expansion in \(1 /\left(1+t^{2} / v\right)\) of the \(t\) density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

\section*{Comments}

Informational error

\section*{Type Code Description}

43
TIN is set to machine infinity since overflow would occur upon modifying the inverse value for the \(F\) distribution with the result obtained from the inverse \(\beta\) distribution.

\section*{Example}

In this example, we find the 0.05 critical value for a two-sided \(t\) test with 6 degrees of freedom.
```

 USE TIN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL DF, P, T
 CALL UMACH (2, NOUT)
 P}=0.97
 DF=6.0
 T = TIN(P,DF)
 WRITE (NOUT,99999) T
 9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ t w o - s i d e d ~ t (6) ~ 0 . 0 5 ~ c r i t i c a l ~ v a l u e ~ i s ~ ' , ~ F 6 . 3)
END

```

\section*{Output}

The two-sided t(6) 0.05 critical value is 2.447

\section*{TPR}

This function evaluates the Student's \(t\) probability density function.

\section*{Function Return Value}
\(T P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(T\) - Argument for which the Student's \(t\) probability density function is to be evaluated. (Input) \(D F\) - Degrees of freedom. (Input) DF must be greater than or equal to 1.0.

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & \(T P R(T, D F)\) \\
Specific: & The specific interface names are \(S \_T P R\) and D_TPR
\end{tabular}

\section*{FORTRAN 77 Interface}

Single:
TPR (T, DF)
Double: The double precision name is DTPR.

\section*{Description}

The function TPR evaluates the Student's \(t\) probability density function, defined as
\[
f(t \mid v)=(\beta(0.5,0.5 v) \sqrt{v})^{-1}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}, \quad-\infty<t<+\infty, v \geq 1
\]

Where \(\mathrm{v}=\mathrm{DF}\).
The normalizing factor uses the Beta function, BETA (see SChapter 4, "Gamma Functions and Related Functions").

\section*{Example}

In this example, we evaluate the probability function at \(T=1.5, \mathrm{DF}=10.0\).
```

USE UMACH_INT
USE TPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL T, DF, PR
CALL UMACH(2, NOUT)

```
```

 T = 1.5
 DF = 10.0
 PR = TPR(T, DF)
 WRITE (NOUT, 99999) T, DF, PR
 99999 FORMAT (' TPR(', F4.2, ', ', F6.2, ') = ', F6.4)
END

```

\section*{Output}
```

TPR(1.50, 10.00) = 0.1274

```

\section*{TNDF}

This function evaluates the noncentral Student's \(t\) cumulative distribution function.

\section*{Function Return Value}
\(T N D F\) - Function value, the probability that a noncentral Student's \(t\) random variable takes a value less than or equal to \(T\). (Output)

\section*{Required Arguments}
\(T\) - Argument for which the noncentral Student's \(t\) cumulative distribution function is to be evaluated. (Input)
IDF - Number of degrees of freedom of the noncentral Student's \(t\) cumulative distribution. (Input) IDF must be positive.
DELTA - The noncentrality parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: TNDF (T, IDF, DELTA)
Specific: \(\quad\) The specific interface names are S_TNDF and D_TNDF.

\section*{FORTRAN 77 Interface}

Single: TNDF (T, IDF, DELTA)
Double: \(\quad\) The double precision name is DTNDF.

\section*{Description}

Function TNDF evaluates the cumulative distribution function \(F\) of a noncentral \(t\) random variable with IDF degrees of freedom and noncentrality parameter DELTA; that is, with \(v=\operatorname{IDF}, \delta=\) DELTA, and \(t_{0}=T\),
\[
F\left(t_{0}\right)=\int_{-\infty}^{t_{0}} \frac{v^{v / 2} e^{-\delta^{2} / 2}}{\sqrt{\pi} \Gamma(v / 2)\left(v+x^{2}\right)^{(v+1) / 2}} \sum_{i=0}^{\infty} \Gamma((v+i+1) / 2)\left(\frac{\delta^{i}}{i!}\right)\left(\frac{2 x^{2}}{v+x^{2}}\right)^{i / 2} d x
\]
where \(\Gamma(\cdot)\) is the gamma function. The value of the distribution function at the point \(t_{0}\) is the probability that the random variable takes a value less than or equal to \(t_{0}\).

The noncentral \(t\) random variable can be defined by the distribution function above, or alternatively and equivalently, as the ratio of a normal random variable and an independent chi-squared random variable. If \(w\) has a normal distribution with mean \(\delta\) and variance equal to one, \(u\) has an independent chi-squared distribution with \(v\) degrees of freedom, and
\[
x=w / \sqrt{u / v}
\]
then \(x\) has a noncentral \(t\) distribution with degrees of freedom and noncentrality parameter \(\delta\).
The distribution function of the noncentral \(t\) can also be expressed as a double integral involving a normal density function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen \((1962,1965)\), which uses repeated integration by parts on that alternate expression for the distribution function.


Figure II.13 - Noncentral Student's t Distribution Function

\section*{Comments}

Informational error

\section*{Type Code Description}
\(4 \quad 2\)
An accurate result cannot be computed due to possible underflow for the machine precision available. DELTA*SQRT (IDF/(IDF+T**2)) must be less than \(\operatorname{SQRT}(-1.9 * \operatorname{ALOG}(S))\), where \(S=A M A C H(1)\).

\section*{Example}

Suppose \(T\) is a noncentral \(t\) random variable with 6 degrees of freedom and noncentrality parameter 6 . In this example, we find the probability that \(T\) is less than 12.0. (This can be checked using the table on page 111 of Owen 1962, with \(\eta=0.866\), which yields \(\lambda=1.664\).)
```

USE UMACH_INT
USE TNDF_INT
IMPLICIT NONE
INTEGER IDF, NOUT
REAL DELTA, P, T
CALL UMACH (2, NOUT)
IDF = 6
DELTA = 6.0

```
```

 T = 12.0
 P = TNDF(T,IDF,DELTA)
 WRITE (NOUT,99999) P
 99999 FORMAT (' The probability that T is less than 12.0 is ', F6.4)
END

```

\section*{Output}

The probability that \(T\) is less than 12.0 is 0.9501

\section*{TNIN}

This function evaluates the inverse of the noncentral Student's \(t\) cumulative distribution function.

\section*{Function Return Value}

TNIN - Function value. (Output)
The probability that a noncentral Student's \(t\) random variable takes a value less than or equal to TNIN is \(P\).

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the noncentral Student's \(t\) cumulative distribution function is to be evaluated. (Input) \(P\) must be in the open interval \((0.0,1.0)\).
IDF - Number of degrees of freedom of the noncentral Student's \(t\) cumulative distribution. (Input) IDF must be positive.
DELTA - The noncentrality parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: TNIN (P, IDF, DELTA)
Specific: \(\quad\) The specific interface names are S_TNIN and D_TNIN.

\section*{FORTRAN 77 Interface}

Single: TNIN (P, IDF, DELTA)
Double: \(\quad\) The double precision name is DTNIN.

\section*{Description}

Function TNIN evaluates the inverse distribution function of a noncentral \(t\) random variable with IDF degrees of freedom and noncentrality parameter DELTA; that is, with \(P=P, \boldsymbol{v}=\) IDF, and \(\delta=\) DELTA, it determines \(t_{0}(=\operatorname{TNIN}(\mathrm{P}, ~ I D F, ~ D E L T A)\) ), such that
\[
P=\int_{-\infty}^{t_{0}} \frac{v^{v / 2} e^{-\delta^{2} / 2}}{\sqrt{\pi} \Gamma(v / 2)\left(v+x^{2}\right)^{(v+1) / 2}} \sum_{i=0}^{\infty} \Gamma((v+i+1) / 2)\left(\frac{\delta^{i}}{i!}\right)\left(\frac{2 x^{2}}{v+x^{2}}\right)^{i / 2} d x
\]
where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(t_{0}\) is \(P\). See TNDF for an alternative definition in terms of normal and chi-squared random variables. The function TNIN uses bisection and modified regula falsi to invert the distribution function, which is evaluated using routine TNDF.

\section*{Comments}

Informational error

\section*{Type Code Description}
\(4 \quad 1\)
Over 100 iterations have occurred without convergence. Convergence is assumed.

\section*{Example}

In this example, we find the 95-th percentage point for a noncentral \(t\) random variable with 6 degrees of freedom and noncentrality parameter 6 .
```

 USE TNIN_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER IDF, NOUT
 REAL DELTA, P, T
 !
CALL UMACH (2, NOUT)
IDF = 6
DELTA = 6.0
P = 0.95
T = TNIN(P,IDF,DELTA)
WRITE (NOUT,99999) T
!
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ 0 . 0 5 ~ n o n c e n t r a l ~ t ~ c r i t i c a l ~ v a l u e ~ i s ~ ' , ~ F 6 . 3 , ~ \& ~
'.')
!
END

```

\section*{Output}
```

The 0.05 noncentral t critical value is 11.995.

```

\section*{TNPR}

This function evaluates the noncentral Student's \(t\) probability density function.

\section*{Function Return Value}
\(T N P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(T\) - Argument for which the noncentral Student's \(t\) probability density function is to be evaluated. (Input)
\(D F\) - Number of degrees of freedom of the noncentral Student's \(t\) distribution. (Input)
DF must be positive.
DELTA - Noncentrality parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: TNPR (T, DF, DELTA)
Specific: \(\quad\) The specific interface names are S_TNPR and D_TNPR.

\section*{Description}

The noncentral Student's \(t\) distribution is a generalization of the Student's \(t\) distribution.
If \(w\) is a normally distributed random variable with unit variance and mean \(\delta\) and \(u\) is a chi-square random variable with \(v\) degrees of freedom that is statistically independent of \(w\), then
\[
T=w / \sqrt{u / v}
\]
is a noncentral \(t\)-distributed random variable with \(v\) degrees of freedom and noncentrality parameter \(\delta\), that is, with \(v=\mathrm{DF}\), and \(\delta=\) DELTA. The probability density function for the noncentral \(t\)-distribution is:
\[
f(t, v, \delta)=\frac{v^{v / 2} e^{-\delta^{2} / 2}}{\sqrt{\pi} \Gamma(v / 2)\left(v+t^{2}\right)^{(v+1) / 2}} \sum_{i=0}^{\infty} \Phi_{i}
\]
where
\[
\Phi_{i}=\frac{\Gamma((v+i+1) / 2)[\delta t]^{i}\left(2 /\left(v+t^{2}\right)\right)^{i / 2}}{i!}
\]
and \(t=T\).

For \(\delta=0\), the PDF reduces to the (central) Student's \(t\) PDF:
\[
f(t, v, 0)=\frac{\Gamma((v+1) / 2)\left(1+\left(t^{2} / v\right)\right)^{-(v+1) / 2}}{\sqrt{v \pi} \Gamma(v / 2)}
\]
and, for \(t=0\), the PDF becomes:
\[
f(0, v, \delta)=\frac{\Gamma((v+1) / 2) e^{-\delta^{2} / 2}}{\sqrt{v \pi} \Gamma(v / 2)}
\]

\section*{Example}

This example calculates the noncentral Student's \(t\) PDF for a distribution with 2 degrees of freedom and noncentrality parameter \(\delta=10\).
```

USE TNPR_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER :: NOUT, I
REAL :: X(6)=(/ -.5, 1.5, 3.5, 7.5, 51.5, 99.5 /)
REAL :: DF, DELTA, PDFV
CALL UMACH (2, NOUT)
DF = 2.0
DELTA = 10.0
WRITE (NOUT,'("DF: ", F4.0, " DELTA: ", F4.0 //' // \&
' " X PDF(X)")') DF, DELTA
DO I = 1, 6
PDFV = TNPR(X(I), DF, DELTA)
WRITE (NOUT,'(1X, F4.1, 2X, E12.5)') X(I), PDFV
END DO
END

```

\section*{Output}
```

DF: 2. DELTA: 10.
PDF (X)
-0.5 0.16399E-23
1.5 0.74417E-09
3.5 0.28972E-02
7.5 0.78853E-01
51.5 0.14215E-02
99.5 0.20290E-03

```

\section*{UNDF}

This function evaluates the uniform cumulative distribution function.

\section*{Function Return Value}

UNDF - Function value, the probability that a uniform random variable takes a value less than or equal to X. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the uniform cumulative distribution function is to be evaluated. (Input)
\(A\) - Location parameter of the uniform cumulative distribution function. (Input)
\(B\) - Value used to compute the scale parameter (B-A) of the uniform cumulative distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: UNDF (X, A, B)
Specific: \(\quad\) The specific interface names are S_UNDF and D_UNDF.

\section*{FORTRAN 77 Interface}

Single: UNDF (X, A, B)
Double: The double precision name is DUNDF.

\section*{Description}

The function UNDF evaluates the uniform cumulative distribution function with location parameter A and scale parameter \((B-A)\). The function definition is
\[
F(x \mid A, B)=\left\{\begin{array}{cc}
0, & \text { if } x<A \\
\frac{x-A}{B-A}, & \text { if } A \leq x \leq B \\
1, & \text { if } x>B
\end{array}\right.
\]

\section*{Example}

In this example, we evaluate the probability function at \(\mathrm{X}=0.65, \mathrm{~A}=0.25, \mathrm{~B}=0.75\).
```

USE UMACH_INT
USE UNDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, PR
CALL UMACH (2, NOUT)
X = 0.65
A=0.25

```
```

 B = 0.75
 PR = UNDF (X, A, B)
 WRITE (NOUT, 99999) X, A, B, PR
 99999 FORMAT (' UNDF(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{UNDF}(0.65,0.25,0.75)=0.8000\)

\section*{UNIN}

This function evaluates the inverse of the uniform cumulative distribution function.

\section*{Function Return Value}

UNIN - Function value, the value of the inverse of the cumulative distribution function. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the uniform cumulative distribution function is to be evaluated. (Input)
\(A\) - Location parameter of the uniform cumulative distribution function. (Input)
B - Value used to compute the scale parameter ( \(\mathrm{B}-\mathrm{A}\) ) of the uniform cumulative distribution function. (Input)

\section*{FORTRAN 90 Interface}

Generic: UNIN (P, A, B)
Specific: The specific interface names are S_UNIN and D_UNIN.

\section*{FORTRAN 77 Interface}
```

Single: UNIN (P, A, B)
Double: \quad The double precision name is DUNIN.

```

\section*{Description}

The function UNIN evaluates the inverse distribution function of a uniform random variable with location parameter A and scale parameter (B-A).

\section*{Example}

In this example, we evaluate the inverse probability function at \(\mathrm{P}=0.80, \mathrm{~A}=0.25, \mathrm{~B}=0.75\).
```

 USE UMACH_INT
 USE UNIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL X, A, B, P
 CALL UMACH(2, NOUT)
 P = 0.80
 A = 0.25
 B = 0.75
 X = UNIN(P, A, B)
 WRITE (NOUT, 99999) P, A, B, X
 99999 FORMAT (' UNIN(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{UNIN}(0.80,0.25,0.75)=0.6500\)

\section*{UNPR}

This function evaluates the uniform probability density function.

\section*{Function Return Value}
\(U N P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the uniform probability density function is to be evaluated. (Input)
\(A\) - Location parameter of the uniform probability function. (Input)
\(B\) - Value used to compute the scale parameter (B-A) of the uniform probability density function. (Input)

\section*{FORTRAN 90 Interface}

Generic: UNPR (X, A, B)
Specific: \(\quad\) The specific interface names are S_UNPR and D_UNPR.

\section*{FORTRAN 77 Interface}

Single: UNPR (X, A, B)
Double: The double precision name is DUNPR.

\section*{Description}

The function UNPR evaluates the uniform probability density function with location parameter A and scale parameter ( \(B-A\) ), defined
\[
f(x \mid A, B)=\left\{\begin{array}{cc}
\frac{1}{B-A} & \text { for } A \leq x \leq B \\
0 & \text { otherwise }
\end{array}\right.
\]

\section*{Example}

In this example, we evaluate the uniform probability density function at \(\mathrm{X}=0.65, \mathrm{~A}=0.25\), \(B=0.75\).
```

USE UMACH_INT
USE UNPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, PR
CALL UMACH (2, NOUT)
X = 0.65
A = 0.25
B = 0.75

```
```

 PR = UNPR(X, A, B)
 WRITE (NOUT, 99999) X, A, B, PR
 99999 FORMAT (' UNPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output

UNPR(0.65, 0.25, 0.75)=2.0000

\section*{WBLDF}

This function evaluates the Weibull cumulative distribution function.

\section*{Function Return Value}

WBLDF - Function value, the probability that a Weibull random variable takes a value less than or equal to X . (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Weibull cumulative distribution function is to be evaluated. (Input)
A - Scale parameter. (Input)
B - Shape parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) WBLDF ( \(\mathrm{X}, \mathrm{A}, \mathrm{B}\) )
Specific: The specific interface names are S_WBLDF and D_WBLDF.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) WBLDF ( \(\mathrm{X}, \mathrm{A}, \mathrm{B}\) )
Double: \(\quad\) The double precision name is DWBLDF.

\section*{Description}

The function WBLDF evaluates the Weibull cumulative distribution function with scale parameter A and shape parameter \(B\), defined
\[
F(x \mid a, b)=1-e^{-\left(\frac{x}{a}\right)^{b}}
\]

To deal with potential loss of precision for small values of \(\left(\frac{x}{a}\right)^{b}\), the difference expression for \(p\) is re-written as
\[
u=\left(\frac{x}{a}\right)^{b}, \quad p=u\left[\frac{\left(e^{-u}-1\right)}{-u}\right]
\]
and the right factor is accurately evaluated using EXPRL.

\section*{Example}

In this example, we evaluate the Weibull cumulative distribution function at \(\mathrm{X}=1.5, \mathrm{~A}=1.0, \mathrm{~B}=2.0\).
```

USE UMACH_INT
USE WBLDF_INT

```
```

 IMPLICIT NONE
 INTEGER NOUT
 REAL X, A, B, PR
 CALL UMACH(2, NOUT)
 X = 1.5
 A = 1.0
 B = 2.0
 PR = WBLDF (X, A, B)
 WRITE (NOUT, 99999) X, A, B, PR
 99999 FORMAT (' WBLDF(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

\section*{Output}
\(\operatorname{WBLDF}(1.50,1.00,2.00)=0.8946\)

\section*{WBLIN}

This function evaluates the inverse of the Weibull cumulative distribution function.

\section*{Function Return Value}

WBLIN - Function value, the value of the inverse of the Weibull cumulative distribution function. (Output)

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the Weibull cumulative distribution function is to be evaluated. (Input)
A - Scale parameter. (Input)
B - Shape parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) WBLIN ( \(\mathrm{P}, \mathrm{A}, \mathrm{B}\) )
Specific: The specific interface names are S_WBLIN and D_WBLIN.

\section*{FORTRAN 77 Interface}

Single: WBLIN (P, A, B)
Double: \(\quad\) The double precision name is DWBLIN.

\section*{Description}

The function WBLIN evaluates the inverse distribution function of a Weibull random variable with scale parameter A and shape parameter B.

\section*{Example}

In this example, we evaluate the inverse probability function at \(\mathrm{P}=0.8946, \mathrm{~A}=1.0, \mathrm{~B}=2.0\).
```

 USE UMACH_INT
 USE WBLIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL X, A, B, P
 CALL UMACH (2, NOUT)
 \(P=0.8946\)
 \(A=1.0\)
 \(B=2.0\)
 \(X=W B L I N(P, A, B)\)
 WRITE (NOUT, 99999) P, A, B, X
 99999 FORMAT (' WBLIN(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

```

Output
\(\operatorname{WBLIN}(0.8946,1.00,2.00)=1.5000\)

\section*{WBLPR}

This function evaluates the Weibull probability density function.

\section*{Function Return Value}
\(W B L P R\) - Function value, the value of the probability density function. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the Weibull probability density function is to be evaluated. (Input)
\(A\) - Scale parameter. (Input)
B - Shape parameter. (Input)

\section*{FORTRAN 90 Interface}

Generic: \(\quad\) WBLPR ( \(\mathrm{X}, \mathrm{A}, \mathrm{B}\) )
Specific: The specific interface names are S_WBLPR and D_WBLPR.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) WBLPR ( \(\mathrm{X}, \mathrm{A}, \mathrm{B}\) )
Double: \(\quad\) The double precision name is DWBLPR.

\section*{Description}

The function WBLPR evaluates the Weibull probability density function with scale parameter A and shape parameter B, defined
\[
f(x \mid a, b)=\frac{b}{a}\left(\frac{x}{a}\right)^{b-1} e^{-\left(\frac{x}{a}\right)^{b}}, \quad a, b>0
\]

\section*{Example}

In this example, we evaluate the Weibull probability density function at \(\mathrm{X}=1.5, \mathrm{~A}=1.0, \mathrm{~B}=2.0\).
```

USE UMACH_INT
USE WBLPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, PR`
CALL UMACH (2, NOUT)
X = 1.5
A = 1.0
B = 2.0
PR = WBLPR(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

```

99999 FORMAT (' WBLPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4) END

\section*{Output}
\(\operatorname{WBLPR}(1.50,1.00,2.00)=0.3162\)

\section*{GCDF}

This function evaluates a general continuous cumulative distribution function given ordinates of the density.

\section*{Function Return Value}

GCDF - Function value, the probability that a random variable whose density is given in \(F\) takes a value less than or equal to XO . (Output)

\section*{Required Arguments}
\(\boldsymbol{X 0}\)-Point at which the cumulative distribution function is to be evaluated. (Input)
\(X\) - Array containing the abscissas or the endpoints. (Input)
If \(\operatorname{IOPT}=1\) or \(3, \mathrm{X}\) is of length 2 . If IOPT \(=2\) or \(4, \mathrm{X}\) is of length M . For IOPT \(=1\) or \(3, \mathrm{X}(1)\) contains the lower endpoint of the support of the distribution and \(X(2)\) is the upper endpoint. For IOPT \(=2\) or \(4, X\) contains, in strictly increasing order, the abscissas such that \(X(I)\) corresponds to \(F(I)\).
\(F\) - Vector of length \(M\) containing the probability density ordinates corresponding to increasing abscissas. (Input)
If IOPT \(=1\) or 3 , for \(I=1,2, \ldots, M, F(I)\) corresponds to \(X(1)+(I-1) *(X(2)-X(1)) /(M-1)\); otherwise, \(F\) and \(X\) correspond one for one.

\section*{Optional Arguments}

IOPT - Indicator of the method of interpolation. (Input) Default: \(\operatorname{IOPT}=1\).

\section*{IOPT Interpolation Method}

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.
\(\boldsymbol{M}\)-Number of ordinates of the density supplied. (Input)
\(M\) must be greater than 1 for linear interpolation (IOPT \(=1\) or 2 ) and greater than 3 if a curve is fitted through the ordinates \((\) IOPT \(=3\) or 4\()\).
Default: \(M=\operatorname{size}(F, 1)\).

\section*{FORTRAN 90 Interface}

Generic:
\(\operatorname{GCDF}(X 0, X, F[, \ldots])\)
Specific: The specific interface names are S_GCDF and D_GCDF.

\section*{FORTRAN 77 Interface}

Single: \(\quad\) GCDF (X0, IOPT, M, X, F)
Double: The double precision name is DGCDF.

\section*{Description}

Function GCDF evaluates a continuous distribution function, given ordinates of the probability density function. It requires that the range of the distribution be specified in \(X\). For distributions with infinite ranges, endpoints must be chosen so that most of the probability content is included. The function GCDF first fits a curve to the points given in X and F with either a piecewise linear interpolant or a \(C^{1}\) cubic spline interpolant based on a method by Akima (1970). Function GCDF then determines the area, \(A\), under the curve. (If the distribution were of finite range and if the fit were exact, this area would be 1.0.) Using the same fitted curve, GCDF next determines the area up to the point \(x_{0}(=X 0)\). The value returned is the area up to \(x_{0}\) divided by A. Because of the scaling by \(A\), it is not assumed that the integral of the density defined by X and F is 1.0. For most distributions, it is likely that better approximations to the distribution function are obtained when IOPT equals 3 or 4 , that is, when a cubic spline is used to approximate the function. It is also likely that better approximations can be obtained when the abscissas are chosen more densely over regions where the density and its derivatives (when they exist) are varying greatly.

\section*{Comments}
1. If \(I O P T=3\), automatic workspace usage is:

GCDF 6 * M units, or
DGCDF 11 * M units.
2. If IOPT \(=4\), automatic workspace usage is

GCDF 5 * M units, or
DGCDF 9 * M units.
3. Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF. The reference is:

G4DF ( \(\mathrm{P}, \mathrm{IOPT}, \mathrm{M}, \mathrm{X}, \mathrm{F}, \mathrm{WK}, ~ I W K\) )
The arguments in addition to those of GCDF are:
WK - Work vector of length \(5 * M\) if IOPT \(=3\), and of length \(4 * M\) if IOPT \(=4\).
IWK - Work vector of length M.

\section*{Example}

In this example, we evaluate the beta distribution function at the point 0.6 . The probability density function of a beta random variable with parameters \(p\) and \(q\) is
\[
f(x)=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} x^{p-1}(1-x)^{q-1} \text { for } 0 \leq x \leq 1
\]
where \(\Gamma(\cdot)\) is the gamma function. The density is equal to 0 outside the interval [0,1]. We compute a constant multiple (we can ignore the constant gamma functions) of the density at 300 equally spaced points and input this information in \(X\) and \(F\). Knowing that the probability density of this distribution is very peaked in the vicinity of 0.5 , we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple. Note that this is the same example as one used in the description of routine BETDF. The result from BETDF would be expected to be more accurate than that from GCDF since BETDF is designed specifically for this distribution.
```

 USE UMACH_INT
 USE GCDF_INT
 IMPLICIT NONE
 INTEGER M
 PARAMETER (M=300)
 !
INTEGER I, IOPT, NOUT
REAL F(M), H, P, PIN1, QIN1, X(2), X0, XI
!
CALL UMACH (2, NOUT)
X0}=0.
IOPT = 3
! Initializations for a beta(12,12)
! distribution.
PIN1 = 11.0
QIN1 = 11.0
XI = 0.0
H=1.0/(M-1.0)
X(1) = XI
F(1) = 0.0
XI = XI + H
! Compute ordinates of the probability
! density function.
DO 10 I=2, M - 1
F(I) = XI**PIN1*(1.0-XI)**QIN1
XI = XI + H
1 0 ~ C O N T I N U E
X(2) = 1.0
F(M) = 0.0
P = GCDF(X0, X, F, IOPT=IOPT)
WRITE (NOUT,99999) P
9 9 9 9 9 ~ F O R M A T ~ (' ~ T h e ~ p r o b a b i l i t y ~ t h a t ~ X ~ i s ~ l e s s ~ t h a n ~ 0 . 6 ~ i s ~ ' , ~ F 6 . 4)
END

```

\section*{Output}

The probability that \(X\) is less than 0.6 is 0.8364

\section*{GCIN}

Evaluates the inverse of a general continuous cumulative distribution function given ordinates of the density.

\section*{Required Arguments}
\(\boldsymbol{P}\) - Probability for which the inverse of the distribution function is to be evaluated. (Input) P must be in the open interval ( \(0.0,1.0\) ).
\(X\) - Array containing the abscissas or the endpoints. (Input)
If IOPT \(=1\) or \(3, \mathrm{X}\) is of length 2 . If \(\operatorname{IOPT}=2\) or \(4, \mathrm{X}\) is of length M . For IOPT \(=1\) or \(3, \mathrm{X}(1)\) contains the lower endpoint of the support of the distribution and \(X(2)\) is the upper endpoint. For IOPT \(=2\) or \(4, X\) contains, in strictly increasing order, the abscissas such that X(I) corresponds to \(F(I)\).
\(F\) - Vector of length \(M\) containing the probability density ordinates corresponding to increasing abscissas. (Input)
If IOPT = 1 or 3 , for \(I=1,2, \ldots, M, F(I)\) corresponds to \(X(1)+(I-1) *(X(2)-X(1)) /(M-1)\); otherwise, F and X correspond one for one.
GCIN - Function value. (Output)
The probability that a random variable whose density is given in \(F\) takes a value less than or equal to GCIN is \(P\).

\section*{Optional Arguments}

IOPT - Indicator of the method of interpolation. (Input) Default: \(\operatorname{IOPT}=1\).

\section*{IOPT Interpolation Method}

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
\(4 \quad\) A cubic spline is fitted to possibly unequally spaced abscissas.
\(M\) - Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT \(=1\) or 2 ) and greater than 3 if a curve is fitted through the ordinates (IOPT \(=3\) or 4 ).
Default: \(M=\operatorname{size}(F, 1)\).

\section*{FORTRAN 90 Interface}

Generic:
CALL GCIN ( \(\mathrm{P}, \mathrm{X}, \mathrm{F}[, \ldots]\) )
Specific: The specific interface names are S_GCIN and D_GCIN.

\section*{FORTRAN 77 Interface}

Single: CALL GCIN (P, IOPT, M, X, F)

Double: The double precision function name is DGCIN.

\section*{Description}

Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the probability density function. The range of the distribution must be specified in \(X\). For distributions with infinite ranges, endpoints must be chosen so that most of the probability content is included.

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear interpolant or a \(C^{1}\) cubic spline interpolant based on a method by Akima (1970). Function GCIN then determines the area, \(A\), under the curve. (If the distribution were of finite range and if the fit were exact, this area would be 1.0.) It next finds the maximum abscissa up to which the area is less than \(A P\) and the minimum abscissa up to which the area is greater than \(A P\). The routine then interpolates for the point corresponding to \(A P\). Because of the scaling by \(A\), it is not assumed that the integral of the density defined by X and F is 1.0 .

For most distributions, it is likely that better approximations to the distribution function are obtained when IOPT equals 3 or 4 , that is, when a cubic spline is used to approximate the function. It is also likely that better approximations can be obtained when the abscissas are chosen more densely over regions where the density and its derivatives (when they exist) are varying greatly.

\section*{Comments}

Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The reference is G3 IN ( P, IOPT, M, X, F, WK, IWK)
The arguments in addition to those of GCIN are:
\(W K-\) Work vector of length \(5 * M\) if IOPT \(=3\), and of length \(4 * M\) if IOPT \(=4\).
IWK - Work vector of length M.

\section*{Example}

In this example, we find the 90-th percentage point for a beta random variable with parameters 12 and 12. The probability density function of a beta random variable with parameters \(p\) and \(q\) is
\[
f(x)=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} x^{p-1}(1-x)^{q-1} \text { for } 0 \leq x \leq 1
\]
where \(\Gamma(\cdot)\) is the gamma function. The density is equal to 0 outside the interval \([0,1]\). With \(p=q\), this is a symmetric distribution. Knowing that the probability density of this distribution is very peaked in the vicinity of 0.5 , we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple and use 300 equally spaced points. Note that this is the same example that is used in the description of routine BETIN. The result from BETIN would be expected to be more accurate than that from GCIN since BETIN is designed specifically for this distribution.
```

USE GCIN_INT
USE UMACH_INT
USE BETA_INT

```
```

 IMPLICIT NONE
 INTEGER M
 PARAMETER (M=300)
 !
INTEGER I, IOPT, NOUT
REAL C, F(M), H, P, PIN, PIN1, QIN, QIN1, \&
X(2), X0, XI
!
CALL UMACH (2, NOUT)
P}=0.
IOPT = 3
! Initializations for a beta(12,12)
! distribution.
PIN = 12.0
QIN = 12.0
PIN1 = PIN - 1.0
QIN1 = QIN - 1.0
C = 1.0/BETA (PIN,QIN)
XI = 0.0
H=1.0/(M-1.0)
X(1) = XI
F(1) = 0.0
XI = XI + H
! Compute ordinates of the probability
! density function.
DO 10 I=2, M - 1
F(I) = C*XI**PIN1*(1.0-XI)**QIN1
XI = XI + H
1 0 ~ C O N T I N U E
X(2) = 1.0
F(M) = 0.0
X0 = GCIN(P,X,F, IOPT=IOPT)
WRITE (NOUT,99999) X0
9 9 9 9 9 ~ F O R M A T ~ (' ~ X ~ i s ~ l e s s ~ t h a n ~ ' , ~ F 6 . 4 , ~ ' ~ w i t h ~ p r o b a b i l i t y ~ 0 . 9 . ') ,
END

```

\section*{Output}
```

X is less than 0.6304 with probability 0.9.

```

\section*{GFNIN}

This function evaluates the inverse of a general continuous cumulative distribution function given in a subprogram.

\section*{Function Return Value}

GFNIN - The inverse of the function F at the point P . (Output) F (GFNIN) is "close" to P .

\section*{Required Arguments}
\(\boldsymbol{F}\) - User-supplied FUNCTION to be inverted. F must be continuous and strictly monotone. The form is \(F(\mathrm{X})\), where
\(X\) - The argument to the function. (Input)
\(F\) - The value of the function at \(x\). (Output)
F must be declared EXTERNAL in the calling program.
\(\boldsymbol{P}\) - The point at which the inverse of F is desired. (Input)
GUESS - An initial estimate of the inverse of F at P . (Input)

\section*{Optional Arguments}

EPS - Convergence criterion. (Input)
When the relative change in GFNIN from one iteration to the next is less than EPS, convergence is assumed. A common value for EPS is 0.0001 . Another common value is 100 times the machine epsilon. Default: EPS = 100 times the machine epsilon.

\section*{FORTRAN 90 Interface}

Generic: GFNIN (F, P, GUESS [, ..] )
Specific: The specific interface names are S_GFNIN and D_GFNIN.

\section*{FORTRAN 77 Interface}

Single: GFNIN (F, P, EPS, GUESS)
Double: \(\quad\) The double precision name is DGFNIN.

\section*{Description}

Function GFNIN evaluates the inverse of a continuous, strictly monotone function. Its most obvious use is in evaluating inverses of continuous distribution functions that can be defined by a FORTRAN function. If the distribution function cannot be specified in a FORTRAN function, but the density function can be evaluated at a number of points, then routine GCIN can be used.

Function GFNIN uses regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and Bjorck 1974). A maximum of 100 iterations are performed.

\section*{Comments}
1. Informational errors
\begin{tabular}{lll} 
Type & Code & Description \\
4 & 1 & \begin{tabular}{l} 
After 100 attempts, a bound for the inverse cannot be determined. Try again \\
with a different initial estimate.
\end{tabular} \\
4 & 2 & \begin{tabular}{l} 
No unique inverse exists.
\end{tabular} \\
4 & 3 & \begin{tabular}{l} 
Over 100 iterations have occurred without convergence. Convergence is \\
assumed.
\end{tabular}
\end{tabular}
2. The function to be inverted need not be a distribution function, it can be any continuous, monotonic function.

\section*{Example}

In this example, we find the 99-th percentage point for an \(F\) random variable with 1 and 7 degrees of freedom. (This problem could be solved easily using routine FIN. Compare the example for FIN). The function to be inverted is the \(F\) distribution function, for which we use routine FDF. Since FDF requires the degrees of freedom in addition to the point at which the function is evaluated, we write another function \(F\) that receives the degrees of freedom via a common block and then calls FDF. The starting point (initial guess) is taken as two standard deviations above the mean (since this would be a good guess for a normal distribution). It is not necessary to supply such a good guess. In this particular case, an initial estimate of 1.0 , for example, yields the same answer in essentially the same number of iterations. (In fact, since the \(F\) distribution is skewed, the initial guess, 7.0, is really not that close to the final answer.)
```

 USE UMACH_INT
 USE GFNIN_INT
 IMPLICIT NONE
 INTEGER NOUT
 REAL DFD, DFN, F, FO, GUESS, P, SQRT
 COMMON /FCOM/ DFN, DFD
 INTRINSIC SQRT
 EXTERNAL F
 CALL UMACH (2, NOUT)
 P}=0.9
 DFN = 1.0
 DFD = 7.0
    ```
!
    Compute GUESS as two standard
    deviations above the mean.
    GUESS \(=\mathrm{DFD} /(\mathrm{DFD}-2.0)+2.0 * \operatorname{SQRT}\left(2.0 * D F D * D F D *(D F N+D F D-2.0) /\left(D F N^{*} \&\right.\right.\)
        (DFD-2.0)**2*(DFD-4.0)))
    \(\mathrm{FO}=\operatorname{GFNIN}(\mathrm{F}, \mathrm{P}, \mathrm{GUESS})\)
    WRITE (NOUT, 99999) F0
99999 FORMAT (' The \(F(1,7) 0.01\) critical value is ', F6.3)
    END
!
    REAL FUNCTION F (X)
    REAL X
!
```

 REAL DFD, DFN, FDF
 COMMON /FCOM/ DFN, DFD
 EXTERNAL FDF
 F = FDF (X,DFN,DFD)
 RETURN
 END
    ```

\section*{Output}

The \(F(1,7) 0.01\) critical value is 12.246

\section*{\(\equiv\) Chapter 12: Mathieu Functions}

\section*{Routines}
Evaluate the eigenvalues for the periodic Mathieu functions .MATEE ..... 447
Evaluate even, periodic Mathieu functions. ..... MATCE ..... 450
Evaluate odd, periodic Mathieu functions .MATSE ..... 454

\section*{Usage Notes}

Mathieu's equation is
\[
\frac{d^{2} y}{d v^{2}}+(a-2 q \cos 2 v) y=0
\]

It arises from the solution, by separation of variables, of Laplace's equation in elliptical coordinates, where \(a\) is the separation constant and \(q\) is related to the ellipticity of the coordinate system. If we let \(t=\cos v\), then Mathieu's equation can be written as
\[
\left(1-t^{2}\right) \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}+\left(a+2 q-4 q t^{2}\right) y=0
\]

For various physically important problems, the solution \(y(t)\) must be periodic. There exist, for particular values of \(a\), periodic solutions to Mathieu's equation of period \(k \pi\) for any integer \(k\). These particular values of \(a\) are called eigenvalues or characteristic values. They are computed using the routine MATEE.

There exist sequences of both even and odd periodic solutions to Mathieu's equation. The even solutions are computed by MATCE. The odd solutions are computed by MATSE.

\section*{MATEE}

Evaluates the eigenvalues for the periodic Mathieu functions.

\section*{Required Arguments}
\(Q\) - Parameter. (Input)
ISYM - Symmetry indicator. (Input)
ISYM Meaning
0
Even
1 Odd
IPER - Periodicity indicator. (Input)
ISYM Meaning

0
pi
\(1 \quad 2\) * pi
EVAL - Vector of length N containing the eigenvalues. (Output)

\section*{Optional Arguments}
\(N\) - Number of eigenvalues to be computed. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{EVAL}, 1)\)

\section*{FORTRAN 90 Interface}

Generic: CALL MATEE (Q, ISYM, IPER, EVAL [, ...])
Specific: The specific interface names are S_MATEE and D_MATEE.

\section*{FORTRAN 77 Interface}

Single: CALL MATEE ( \(Q, N\), ISYM, IPER, EVAL)
Double: The double precision function name is DMATEE.

\section*{Description}

The eigenvalues of Mathieu's equation are computed by a method due to Hodge (1972). The desired eigenvalues are the same as the eigenvalues of the following symmetric, tridiagonal matrix:
\[
\left[\begin{array}{ccccc}
W_{0} & q X_{0} & 0 & 0 & \cdots \\
q X_{0} & W_{2} & q X_{2} & 0 & \cdots \\
0 & q X_{2} & W_{4} & q X_{4} & \cdots \\
0 & 0 & q X_{4} & W_{6} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
\]

Here,
\[
\begin{aligned}
X_{m} & = \begin{cases}\sqrt{2} & \text { if ISYM }=\text { IPER }=m=0 \\
1 & \text { otherwise }\end{cases} \\
W_{m} & =[m+\text { IPER }+2(1-\text { IPER }) \text { ISYM }]^{2}+V_{m}
\end{aligned}
\]
where
\[
V_{m}= \begin{cases}+q & \text { if } \text { IPER }=1, \text { ISYM }=0 \text { and } m=0 \\ -q & \text { if } \text { IPER }=1, \text { ISYM }=1 \text { and } m=0 \\ 0 & \text { otherwise }\end{cases}
\]

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be computed. Routine MATEE computes an estimate of the number of terms needed to get accurate results. This estimate can be overridden by calling M2TEE with NORDER equal to the desired order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL Fortran Math Library, Chapter 2, "Eigensystem Analysis".

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of \(22 \mathrm{TEE} / \mathrm{DM} 2 \mathrm{TEE}\). The reference is

CALL M2 TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD, WORKE)
The additional arguments are as follows:
NORDER - Order of the matrix whose eigenvalues are computed. (Input)
WORKD - Work vector of size NORDER. (Input/Output)
If EVAL is large enough then EVAL and WORKD can be the same vector.
WORKE - Work vector of size NORDER. (Input/Output)
2. Informational error

\section*{Type Code \\ Description}

4
1
The iteration for the eigenvalues did not converge.

\section*{Example}

In this example, the eigenvalues for \(Q=5\), even symmetry, and \(\pi\) periodicity are computed and printed.
```

USE UMACH_INT

```
```

 USE MATEE_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER N
PARAMETER (N=10)
!
INTEGER ISYM, IPER, K, NOUT
REAL Q, EVAL (N)
!
Q = 5.0
ISYM = 0
IPER = 0
CALL MATEE (Q, ISYM, IPER, EVAL)
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) 2*K-2, EVAL(K)
1 0 ~ C O N T I N U E ~
9 9 9 9 9 ~ F O R M A T ~ (' ~ E i g e n v a l u e ' , ~ I 2 , ~ ' ~ = ~ ' , ~ F 9 . 4)
END

```

\section*{Output}
\begin{tabular}{lr} 
Eigenvalue \(0=\) & -5.8000 \\
Eigenvalue \(2=\) & 7.4491 \\
Eigenvalue \(4=17.0966\) \\
Eigenvalue \(6=36.3609\) \\
Eigenvalue \(8=64.1989\) \\
Eigenvalue10 \(=100.1264\) \\
Eigenvalue12 \(=144.0874\) \\
Eigenvalue14 \(=196.0641\) \\
Eigenvalue16 \(=256.0491\) \\
Eigenvalue18 \(=324.0386\)
\end{tabular}

\section*{MATCE}

Evaluates a sequence of even, periodic, integer order, real Mathieu functions.

\section*{Required Arguments}
\(X\) - Argument for which the sequence of Mathieu functions is to be evaluated. (Input)
\(Q\) - Parameter. (Input)
The parameter \(Q\) must be positive.
\(N\) - Number of elements in the sequence. (Input)
\(C E\) - Vector of length N containing the values of the function through the series. (Output)
\(C E(I)\) contains the value of the Mathieu function of order \(I-1\) at X for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL MATCE ( \(\mathrm{X}, \mathrm{Q}, \mathrm{N}, \mathrm{CE}\) )
Specific: The specific interface names are S_MATCE and D_MATCE.

\section*{FORTRAN 77 Interface}

Single:
CALL MATCE (X, Q, N, CE)
Double: The double precision name is DMATCE.

\section*{Description}

The eigenvalues of Mathieu's equation are computed using MATEE. The function values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of \(\mathrm{M} 2 \mathrm{TCE} / \mathrm{DM} 2 \mathrm{TCE}\). The reference is

CALL M2TCE ( \(\mathrm{X}, \mathrm{Q}, \mathrm{N}, \mathrm{CE}\), NORDER, NEEDEV, EVAL0, EVAL1, COEF, WORK, BSJ)
The additional arguments are as follows:
NORDER - Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following call to M3TEE.
CALL M3TEE(Q, N, NORDER)
NEEDEV - Logical variable, if .TRUE., the eigenvalues must be computed. (Input)
EVALO - Real work vector of length NORDER containing the eigenvalues computed by MATEE with ISYM \(=0\) and IPER \(=0\). (Input/Output)
If NEEDEV is .TRUE., then EVALO is computed by M2 TCE; otherwise, it must be set as an input value.
EVAL1 - Real work vector of length NORDER containing the eigenvalues computed by MATEE with ISYM \(=0\) and IPER \(=1\). (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it must be set as an input value.

COEF - Real work vector of length NORDER +4.
WORK - Real work vector of length NORDER +4 .
BSJ — Real work vector of length 2 * NORDER - 2.
2. Informational error
\begin{tabular}{lll} 
Type & Code & Description \\
4 & 1 & The iteration for the eigenvalues did not converge.
\end{tabular}

\section*{Examples}

\section*{Example 1}

In this example, \(\mathrm{ce}_{n}(x=\pi / 4, q=1), n=0, \ldots, 9\) is computed and printed.
```

 USE CONST_INT
 USE MATCE_INT
 USE UMACH_INT
 IMPLICIT NONE
 ! Declare variables
INTEGER N
PARAMETER (N=10)
INTEGER K, NOUT
REAL CE(N), Q, X
Q = 1.0
X = CONST('PI')
X = 0.25* X
CALL MATCE (X, Q, N, CE)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, CE(K)
CONTINUE
FORMAT (' ce sub', I2, ' (', F6.3, ',', F6.3, ') = ', F6.3)
END

```

\section*{Output}
```

ce sub 0 (0.785, 1.000) = 0.654
ce sub 1 (0.785, 1.000) = 0.794
ce sub 2 (0.785, 1.000) = 0.299
ce sub 3 (0.785, 1.000) = -0.555
ce sub 4 (0.785, 1.000) = -0.989
ce sub 5 (0.785, 1.000) = -0.776
ce sub 6 (0.785, 1.000) = -0.086
ce sub 7 (0.785, 1.000) = 0.654
ce sub 8 (0.785, 1.000) = 0.998
ce sub 9 (0.785, 1.000) = 0.746

```

\section*{Example 2}

In this example, we compute \(\mathrm{ce}_{n}(x, q)\) for various values of \(n\) and \(x\) and a fixed value of \(q\). To avoid having to recompute the eigenvalues, which depend on \(q\) but not on \(x\), we compute the eigenvalues once and pass in their value to M2TCE. The eigenvalues are computed using MATEE. The routine M3TEE is used to compute NORDER based on \(Q\) and \(N\). The arrays BSJ, COEF and WORK are used as temporary storage in M2TCE.
```

 USE IMSL_LIBRARIES
 IMPLICIT NONE
 ! Declare variables
INTEGER MAXORD, N, NX
PARAMETER (MAXORD=100, N=4, NX=5)
!
INTEGER ISYM, K, NORDER, NOUT
REAL BSJ (2*MAXORD-2), CE (N), COEF (MAXORD+4)
REAL EVAL0 (MAXORD), EVAL1(MAXORD), PI, Q, WORK(MAXORD+4), X
!
Q = 1.0
CALL M3TEE (Q, N, NORDER)
CALL UMACH (2, NOUT)
WRITE (NOUT, 99997) NORDER
Compute eigenvalues
ISYM = 0
CALL MATEE (Q, ISYM, 0, EVALO)
CALL MATEE (Q, ISYM, 1, EVAL1)
PI = CONST('PI')
WRITE (NOUT, 99998)
DO 10 K=0, NX
X = (K*PI)/NX
CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVAL0, EVAL1, \&
COEF, WORK, BSJ)
WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4)
1 0 ~ C O N T I N U E
!
9 9 9 9 7 ~ F O R M A T ~ (' ~ N O R D E R ~ = ~ ' , ~ I 3) ,
99998 FORMAT (/, 28X, 'Order', /, 20X, '0', 7X, '1', 7X, \&
'2', 7X, '3')
99999 FORMAT (' ce(', F6.3, ') = ', 4F8.3)
END

```

\section*{Output}
```

NORDER = 23

		Order			
ce (0.000)	$=$	0.385	0.857	1.086	1.067
ce (0.628)	$=$	0.564	0.838	0.574	-0.131
ce (1.257)	$=$	0.926	0.425	-0.575	-0.820

```
```

ce(1.885) = 0.926 -0.425 -0.575 0.820
ce(2.513) = 0.564 -0.838 0.574 0.131
ce(3.142) = 0.385 -0.857 1.086 -1.067

```


Figure 12.1 — Plot of \(\mathrm{ce}_{\mathrm{n}}(\mathrm{x}, \mathrm{q}=\mathrm{I})\)

\section*{MATSE}

Evaluates a sequence of odd, periodic, integer order, real Mathieu functions.

\section*{Required Arguments}
\(X\) - Argument for which the sequence of Mathieu functions is to be evaluated. (Input)
\(Q\) - Parameter. (Input)
The parameter \(Q\) must be positive.
\(N\) - Number of elements in the sequence. (Input)
\(S E\) - Vector of length \(N\) containing the values of the function through the series. (Output) \(\operatorname{SE}(\mathrm{I})\) contains the value of the Mathieu function of order I at X for \(\mathrm{I}=1\) to N .

\section*{FORTRAN 90 Interface}

Generic: CALL MATSE ( \(\mathrm{X}, \mathrm{Q}, \mathrm{N}, \mathrm{SE}\) )
Specific: The specific interface names are S_MATSE and D_MATSE.

\section*{FORTRAN 77 Interface}

Single: CALL MATSE ( \(\mathrm{X}, \mathrm{Q}, \mathrm{N}, \mathrm{SE}\) )
Double: The double precision function name is DMATSE.

\section*{Description}

The eigenvalues of Mathieu's equation are computed using MATEE. The function values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of M2TSE/DM2TSE. The reference is

CALL M2TSE ( \(\mathrm{X}, \mathrm{Q}, \mathrm{N}, \mathrm{SE}\), NORDER, NEEDEV, EVAL0, EVAL1, COEF, WORK, BSJ)
The additional arguments are as follows:
NORDER - Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than \(N\). Routine MATSE computes NORDER by the following call to M3TEE.
CALL M3TEE ( \(\mathrm{Q}, \mathrm{N}, \mathrm{NORDER}\) )
NEEDEV - Logical variable, if .TRUE., the eigenvalues must be computed. (Input)
EVALO - Real work vector of length NORDER containing the eigenvalues computed by MATEE with \(I S Y M=1\) and IPER \(=0\). (Input/Output)
If NEEDEV is .TRUE., then EVAL0 is computed by M2TSE; otherwise, it must be set as an input value.
EVAL1 - Real work vector of length NORDER containing the eigenvalues computed by MATEE with ISYM \(=1\) and IPER \(=1\). (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it must be set as an input value.

COEF - Real work vector of length NORDER +4.
WORK - Real work vector of length NORDER +4 .
BSI - Real work vector of length 2 * NORDER +1 .
2. Informational error
\begin{tabular}{lll} 
Type & Code & Description \\
4 & 1 & The iteration for the eigenvalues did not converge.
\end{tabular}

\section*{Example}

In this example, \(\operatorname{se}_{n}(x=\pi / 4, q=10), n=0, \ldots, 9\) is computed and printed.


Figure 12.2 - Plot of \(\mathrm{se}_{\mathrm{n}}(\mathrm{x}, \mathrm{q}=\mathrm{I})\)
```

USE CONST_INT
USE MATSE_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=10)
INTEGER K, NOUT
REAL SE(N), Q, X
Q = 10.0
X = CONST('PI')
X = 0.25* X
CALL MATSE (X, Q, N, SE)

```

CALL UMACH (2, NOUT)
DO \(10 \mathrm{~K}=1\), N WRITE (NOUT, 99999) K-1, X, Q, SE(K)
CONTINUE
99999 FORMAT (' se sub', I2, ' (', F6.3, ',', F6.3, ') = ', F6.3)
END

\section*{Output}
```

se sub 0 (0.785,10.000) = 0.250
se sub 1 (0.785,10.000) = 0.692
se sub 2 (0.785,10.000) = 1.082
se sub 3 (0.785,10.000) = 0.960
se sub 4 (0.785,10.000) = 0.230
se sub 5 (0.785,10.000) = -0.634
se sub 6 (0.785,10.000) = -0.981
se sub 7 (0.785,10.000) = -0.588
se sub 8 (0.785,10.000) = 0.219
se sub 9 (0.785,10.000) = 0.871

```

\section*{Chapter 13: Miscellaneous Functions}

\section*{Routines}
Spence dilogarithm SPENC ..... 460
Initialize a Chebyshev series ..... INITS ..... 462
Evaluate a Chebyshev series ..... CSEVL ..... 463

\section*{Usage Notes}

Many functions of one variable can be numerically computed using a Chebyshev series,
\[
f(x)=\sum_{n=0}^{\infty} A_{n} T_{n}(x) \quad-1 \leq x \leq 1
\]

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev polynomials, \(T_{n}(x)\), are better behaved than the monomials, \(x^{n}\).

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp, (see Luke (1969), page 292).

Let
\[
f(x)=\sum_{n=0}^{\infty} \xi_{n} x^{n}
\]
be a Taylor series expansion valid for \(|x|<1\). Define
\[
A_{n}=\frac{2}{4^{n}} \sum_{k=0}^{\infty} \frac{\left(n+\frac{1}{2}\right)_{k}(n+1)_{k} \xi_{n+k}}{(2 n+1)_{k} k!}
\]
where \((a)_{k}=\Gamma(a+k) / \Gamma(a)\) is Pochhammer's symbol.
(Note that \(\left.(a)_{k+1}=(a+k)(a)_{k}\right)\). Then,
\[
f(x)=\frac{1}{2} T_{0}^{*}(x)+\sum_{n=1}^{\infty} A_{n} T_{n}^{*}(x) \quad 0 \leq x \leq 1
\]
where
\[
T_{n}^{*}(x)
\]
are the shifted Chebyshev polynomials,
\[
T_{n}^{*}(x)=T_{n}^{*}(2 x-1)
\]

In an actual implementation of this algorithm, the number of terms in the Taylor series and the number of terms in the Chebyshev series must both be finite. If the Taylor series is an alternating series, then the error in using only the first \(M\) terms is less than \(\left|\xi_{M+1}\right|\). The error in truncating the Chebyshev series to \(N\) terms is no more than
\[
\sum_{n=N+1}^{\infty}\left|c_{n}\right|
\]

If the Taylor series is valid on \(|x|<R\), then we can write
\[
f(x)=\sum_{n=0}^{\infty} \xi_{n} R^{n}(x / R)^{n}
\]
and use \(\xi_{n} R^{n}\) instead of \(\xi_{n}\) in the algorithm to obtain a Chebyshev series in \(x / R\) valid for \(0<x<R\). Unfortunately, if \(R\) is large, then the Chebyshev series converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at \(c\). Let \(t=x-c\), so
\[
\begin{aligned}
f(x)=f(t+c) & =\sum_{n=0}^{\infty} \xi_{n}(t+c)^{n}=\sum_{n=0}^{\infty} \sum_{j=0}^{n} \xi_{n}\binom{n}{j} c^{n-j} t^{j} \\
& =\sum_{n=0}^{\infty} \hat{\xi}_{n} t^{n}=\sum_{n=0}^{\infty} \hat{\xi}_{n}(x-c)^{n}
\end{aligned}
\]

By interchanging the order of the double sum, it can easily be shown that
\[
\hat{\xi}_{j}=\sum_{n=j}^{\infty}\binom{n}{j} c^{n-j} \xi_{n}
\]

By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval \([a, b]\) for which the original Taylor series converges.

The algorithm can also be applied to asymptotic series,
\[
f(x) \sim \sum_{n=0}^{\infty} \xi_{n} x^{-n} \text { as }|x| \rightarrow \infty
\]
by treating the series truncated to \(M\) terms as a polynomial in \(1 / x\). The asymptotic series is usually divergent; but if it is alternating, the error in truncating the series to \(M\) terms is less than \(\left|\xi_{M+1}\right| / R^{M+1}\) for \(R \leq x<\infty\). Normally, as \(M\) increases, the error initially decreases to a small value and then increases without a bound. Therefore, there is a limit to the accuracy that can be obtained by increasing \(M\). More accuracy can be obtained by increasing \(R\). The optimal value of \(M\) depends on both the sequence \(\xi_{j}\) and \(R\). For \(R\) fixed, the optimal value of \(M\) can be found by finding the value of \(M\) at which \(\left|\xi_{M}\right| / R^{M}\) starts to increase.

Since we want a routine accurate to near machine precision, the algorithm must be implemented using somewhat higher precision than is normally used. This is best done using a symbolic computation package.

\section*{SPENC}

This function evaluates a form of Spence's integral.

\section*{Function Return Value}

SPENC - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the function value is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: SPENC (x)
Specific: The specific interface names are S_SPENC and D_SPENC.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & SPENC (X) \\
Double: & The double precision function name is DSPENC.
\end{tabular}

\section*{Description}

The Spence dilogarithm function, \(s(x)\), is defined to be
\[
s(x)=-\int_{0}^{x} \frac{\ln |1-y|}{y} d y
\]

For \(|x| \leq 1\), the uniformly convergent expansion
\[
s(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}
\]
is valid.
Spence's function can be used to evaluate much more general integral forms. For example,
\[
c \int_{0}^{z} \frac{\log (a x+b)}{c x+d} d x=\log \left|\frac{a(c z+d)}{a d-b c}\right|-s\left(\frac{a(c z+d)}{a d-b c}\right)
\]

\section*{Example}

In this example, \(s(0.2)\) is computed and printed.
```

USE SPENC_INT
USE UMACH_INT

```
```

 IMPLICIT NONE
 ! Declare variables
INTEGER NOUT
REAL VALUE, X
!
X = 0.2
VALUE = SPENC(X)
!
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' SPENC(', F6.3, ') = ', F6.3)
END

```

\section*{Output}
\(\operatorname{SPENC}(0.200)=0.211\)

\section*{INITS}

This function Initializes the orthogonal series so the function value is the number of terms needed to insure the error is no larger than the requested accuracy.

\section*{Function Return Value}

INITS - Number of terms needed to insure the error is no larger than ETA. (Output)

\section*{Required Arguments}

OS - Vector of length NOS containing coefficients in an orthogonal series. (Input)
NOS - Number of coefficients in OS. (Input)
\(E T A\) - Requested accuracy of the series. (Input)
Contrary to the usual convention, ETA is a REAL argument to INITDS.

\section*{FORTRAN 90 Interface}

Generic: INITS (OS, NOS, ETA)
Specific: The specific interface names are INITS and INITDS.

\section*{FORTRAN 77 Interface}

Single: INITS (OS, NOS, ETA)
Double: The double precision function name is INITDS.

\section*{Description}

Function INITS initializes a Chebyshev series. The function INITS returns the number of terms in the series \(s\) of length \(n\) needed to insure that the error of the evaluated series is everywhere less than ETA. The number of input terms \(n\) must be greater than 1 , so that a series of at least one term and an error estimate can be obtained. In addition, ETA should be larger than the absolute value of the last coefficient. If it is not, then all the terms of the series must be used, and no error estimate is available.

\section*{Comments}

ETA will usually be chosen to be one tenth of machine precision.

\section*{CSEVL}

This function evaluates the \(N\)-term Chebyshev series.

\section*{Function Return Value}

CSEVL - Function value. (Output)

\section*{Required Arguments}
\(X\) - Argument at which the series is to be evaluated. (Input)
\(C S\) - Vector of length \(N\) containing the terms of a Chebyshev series. (Input) In evaluating CS, only half of the first coefficient is summed.

\section*{Optional Arguments}
\(N\) - Number of terms in the vector CS. (Input)
Default: \(N=\operatorname{size}(C S, 1)\)

\section*{FORTRAN 90 Interface}

Generic: CSEVL (X, CS [, ...])
Specific: The specific interface names are S_CSEVL and D_CSEVL.

\section*{FORTRAN 77 Interface}

Single:
CSEVL (X, CS, N)
Double: The double precision function name is DCSEVL.

\section*{Description}

Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array \(s\) of length \(n\) at the point \(x\). The argument \(x\) must lie in the interval \([-1,+1]\). Other finite intervals can be linearly transformed to this canonical interval. Also, the number of terms in the series must be greater than zero but less than 1000. This latter limit is purely arbitrary; it is imposed in order to guard against the possibility of a floating point number being passed as an argument for \(n\).

\section*{Comments}

Informational error
\begin{tabular}{lll} 
Type & Code & Description \\
3 & 7 & x is outside the interval \((-1.1,+1.1)\)
\end{tabular}

\section*{Reference Material}

\section*{Routines/Topics}
User Errors ..... 466
ERSET ..... 469
IERCD and N1RTY ..... 470
Machine-Dependent Constants ..... 471
IMACH ..... 472
AMACH ..... 474
IFNAN(X) ..... 477
UMACH ..... 479
Reserved Names ..... 481
Deprecated Features and Deleted Routines ..... 482

\section*{User Errors}

IMSL routines attempt to detect user errors and handle them in a way that provides as much information to the user as possible. To do this, we recognize various levels of severity of errors, and we also consider the extent of the error in the context of the purpose of the routine; a trivial error in one situation may be serious in another. IMSL routines attempt to report as many errors as they can reasonably detect. Multiple errors present a difficult problem in error detection because input is interpreted in an uncertain context after the first error is detected.

\section*{What Determines Error Severity}

In some cases, the user's input may be mathematically correct, but because of limitations of the computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed degree of accuracy determines the severity of the error. In cases where the routine computes several output quantities, if some are not computable but most are, an error condition exists. The severity depends on an assessment of the overall impact of the error.

\section*{Terminal errors}

If the user's input is regarded as meaningless, such as \(N=-1\) when " \(N\) " is the number of equations, the routine prints a message giving the value of the erroneous input argument(s) and the reason for the erroneous input. The routine will then cause the user's program to stop. An error in which the user's input is meaningless is the most severe error and is called a terminal error. Multiple terminal error messages may be printed from a single routine.

\section*{Informational errors}

In many cases, the best way to respond to an error condition is simply to correct the input and rerun the program. In other cases, the user may want to take actions in the program itself based on errors that occur. An error that may be used as the basis for corrective action within the program is called an informational error. If an informational error occurs, a user-retrievable code is set. A routine can return at most one informational error for a single reference to the routine. The codes for the informational error codes are printed in the error messages.

\section*{Other errors}

In addition to informational errors, IMSL routines issue error messages for which no user-retrievable code is set. Multiple error messages for this kind of error may be printed. These errors, which generally are not described in the documentation, include terminal errors as well as less serious errors. Corrective action within the calling program is not possible for these errors.

\section*{Kinds of Errors and Default Actions}

Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each level has an associated PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the user. The purpose of having multiple error severity levels is to provide indepen-
dent control of actions to be taken for errors of different severity. Upon return from an IMSL routine, exactly one error state exists. (A code 0 "error" is no informational error.) Even if more than one informational error occurs, only one message is printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the calling program is reasonable or necessary result in the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any of the severity levels except level 5 may be informational errors.
- Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to provide information about the computations. Default attributes: PRINT=NO, STOP=NO
- Level 2: Alert. An alert indicates that the user should be advised about events occurring in the software. Default attributes: PRINT=NO, STOP=NO
- Level 3: Warning. A warning indicates the existence of a condition that may require corrective action by the user or calling routine. A warning error may be issued because the results are accurate to only a few decimal places, because some of the output may be erroneous but most of the output is correct, or because some assumptions underlying the analysis technique are violated. Often no corrective action is necessary and the condition can be ignored. Default attributes: PRINT=YES, STOP=NO
- Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In most cases, the user or calling routine must take corrective action to recover. Default attributes: PRINT=YES, STOP=YES
- Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect specification, such as specifying a negative number as the number of equations. These errors may also be caused by various programming errors impossible to diagnose correctly in FORTRAN. The resulting error message may be perplexing to the user. In such cases, the user is advised to compare carefully the actual arguments passed to the routine with the dummy argument descriptions given in the documentation. Special attention should be given to checking argument order and data types.

A terminal error is not an informational error because corrective action within the program is generally not reasonable. In normal usage, execution is terminated immediately when a terminal error occurs. Messages relating to more than one terminal error are printed if they occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in "Routines for Error Handling."

\section*{Errors in Lower-Level Routines}

It is possible that a user's program may call an IMSL routine that in turn calls a nested sequence of lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the lower-level routine cannot pass the information up to the original user-called routine, then a traceback of the routines is produced. The only common situation in which this can occur is when an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine.

\section*{Routines for Error Handling}

There are three ways in which the user may interact with the IMSL error handling system: (1) to change the default actions, (2) to retrieve the integer code of an informational error so as to take corrective action, and (3) to determine the severity level of an error. The routines to use are ERSET, IERCD and N1RTY, respectively.

\section*{ERSET}

Change the default printing or stopping actions when errors of a particular error severity level occur.

\section*{Required Arguments}

IERSVR - Error severity level indicator. (Input)
If IERSVR \(=0\), actions are set for levels 1 to 5 . If IERSVR is 1 to 5 , actions are set for errors of the specified severity level.
IPACT - Printing action. (Input)

\section*{IPACT Action}
-1 Do not change current setting(s).
\(0 \quad\) Do not print.
1 Print.
2 Restore the default setting(s).
ISACT - Stopping action. (Input)
ISACT Action
\(-1 \quad\) Do not change current setting(s).
0 Do not stop.
1 Stop.
2 Restore the default setting(s).

\section*{FORTRAN 90 Interface}

Generic: CALL ERSET (IERSVR, IPACT, ISACT)
Specific: The specific interface name is ERSET.

\section*{FORTRAN 77 Interface}

Single: CALL ERSET (IERSVR, IPACT, ISACT)

\section*{IERCD and N1RTY}

The last two routines for interacting with the error handling system, IERCD and N1RTY, are INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be used in the following way:

ICODE \(=\operatorname{IERCD}()\)
The function retrieves the code set by the most recently called IMSL routine.
N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the following way:
ITYPE = N1RTY(1)
ITYPE \(=1,2,4\), and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE \(=3\) and ITYPE \(=6\) are both warning errors, error severity level 3. While ITYPE \(=3\) errors are informational errors \((\operatorname{IERCD}() \neq 0), \operatorname{ITYPE}=6\) errors are not informational errors \((\operatorname{IERCD}()=0)\).

For software developers requiring additional interaction with the IMSL error handling system, see Aird and Howell (1991).

\section*{Examples}

\section*{Changes to Default Actions}

Some possible changes to the default actions are illustrated below. The default actions remain in effect for the kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3, 0, -1)
To stop if warning errors occur:
CALL ERSET (3,-1,1)
To print all error messages:
CALL ERSET (0,1,-1)
To restore all default settings:
CALL ERSET (0,2,2)

\section*{Machine-Dependent Constants}

The function subprograms in this section return machine-dependent information and can be used to enhance portability of programs between different computers. The routines IMACH, and AMACH describe the computer's arithmetic. The routine UMACH describes the input, ouput, and error output unit numbers.

\section*{IMACH}

This function retrieves machine integer constants that define the arithmetic used by the computer.

\section*{Function Return Value}
\(\operatorname{IMACH}(1)=\) Number of bits per integer storage unit.
\(\operatorname{IMACH}(2)=\) Number of characters per integer storage unit:
Integers are represented in \(M\)-digit, base \(A\) form as
\[
\sigma \sum_{k=0}^{M} x_{k} A^{k}
\]
where \(\sigma\) is the sign and \(0 \leq x_{k}<A, k=0, \ldots, M\).
Then,
\(\operatorname{IMACH}(3)=A\), the base.
\(\operatorname{IMACH}(4)=M\), the number of base- \(A\) digits.
\(\operatorname{IMACH}(5)=A^{M}-1\), the largest integer.
The machine model assumes that floating-point numbers are represented in normalized \(N\)-digit, base \(B\) form as
\[
\sigma B^{E} \sum_{k=1}^{N} x_{k} B^{-k}
\]
where \(\sigma\) is the sign, \(0<x_{1}<B, 0 \leq x_{k}<B, \mathrm{k}=2, \ldots, N\) and \(E_{\min } \leq E \leq E_{\max }\). Then,
\(\operatorname{IMACH}(6)=B\), the base.
\(\operatorname{IMACH}(7)=N_{s}\), the number base-B-digits in single precision.
\(\operatorname{IMACH}(8)=E_{\text {min }_{s}}\) the smallest single precision exponent.
\(\operatorname{IMACH}(9)=E_{\text {max }_{s},}\), the largest single precision exponent.
\(\operatorname{IMACH}(10)=N_{d}\), the number base-B-digits in double precision.
\(\operatorname{IMACH}(11)=E_{\text {min }_{d}}\), the smallest double precision exponent.
\(\operatorname{IMACH}(12)=E_{\text {max }_{d}}\), largest double precision exponent.

\section*{Required Arguments}

I - Index of the desired constant. (Input)

\section*{FORTRAN 90 Interface}
\begin{tabular}{ll} 
Generic: & IMACH (I) \\
Specific: & The specific interface name is IMACH.
\end{tabular}

\section*{FORTRAN 77 Interface}

Single: IMACH (I)

\section*{AMACH}

The function subprogram AMACH retrieves machine constants that define the computer's single-precision or double precision arithmetic. Such floating-point numbers are represented in normalized \(N\)-digit, base \(B\) form as
\[
\sigma B^{E} \sum_{k=1}^{N} x_{k} B^{-k}
\]
where \(\sigma\) is the sign, \(0<x_{1}<B, 0 \leq x_{k}<B, k=2, \ldots, N\) and
\[
E_{\min } \leq E \leq E_{\max }
\]

\section*{Function Return Value}
\(\operatorname{AMACH}(1)=B^{E_{\text {min }}-1}\), the smallest normalized positive number.
\(\operatorname{AMACH}(2)=B^{E_{\max ^{-1}}}\left(1-B^{-N}\right)\), the largest number.
\(\operatorname{AMACH}(3)=B^{-N}\), the smallest relative spacing.
\(\operatorname{AMACH}(4)=B^{1-N}\), the largest relative spacing.
\(\operatorname{AMACH}(5)=\log _{10}(B)\).
\(\operatorname{AMACH}(6)=\mathrm{NaN}\) (non-signaling not a number).
\(\operatorname{AMACH}(7)=\) positive machine infinity.
\(\operatorname{AMACH}(8)=\) negative machine infinity.
See Comment 1 for a description of the use of the generic version of this function.
See Comment 2 for a description of min, max, and N.

\section*{Required Arguments}

I- Index of the desired constant. (Input)

\section*{FORTRAN 90 Interface}

Generic: AMACH (I)
Specific: The specific interface names are S_AMACH and D_AMACH.

\section*{FORTRAN 77 Interface}

Single:
AMACH (I)
Double: \(\quad\) The double precision name is DMACH.

\section*{Comments}
1. If the generic version of this function is used, the immediate result must be stored in a variable before use in an expression. For example:
\[
\begin{aligned}
& \mathrm{X}=\operatorname{AMACH}(\mathrm{I}) \\
& \mathrm{Y}=\operatorname{SQRT}(\mathrm{X})
\end{aligned}
\]
must be used rather than
\[
\mathrm{Y}=\operatorname{SQRT}(\mathrm{AMACH}(\mathrm{I})) .
\]

If this is too much of a restriction on the programmer, then the specific name can be used without this restriction.
2. Note that for single precision \(B=\operatorname{IMACH}(6), N=\operatorname{IMACH}(7)\).
\(E_{\text {min }}=\operatorname{IMACH}(8)\), and \(E_{\text {max }}=\operatorname{IMACH}(9)\).
For double precision \(B=\operatorname{IMACH}(6), N=\operatorname{IMACH}(10)\).
\(E_{\text {min }}=\operatorname{IMACH}(11)\), and \(E_{\text {max }}=\operatorname{IMACH}(12)\).
3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a number) as the result of various invalid or ambiguous operations, such as \(0 / 0\). The intent is that \(\operatorname{AMACH}(6)\) return a quiet NaN . On IEEE format computers that do not support a quiet NaN, a special value near AMACH(2) is returned for \(\operatorname{AMACH}(6)\). On computers that do not have a special representation for infinity, \(\operatorname{AMACH}(7)\) returns the same value as \(\operatorname{AMACH}(2)\).

DMACH

See AMACH.

\section*{IFNAN(X)}

This logical function checks if the argument X is NaN (not a number).

\section*{Function Return Value}

IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise, False is returned. (Output)

\section*{Required Arguments}
\(X\) - Argument for which the test for NAN is desired. (Input)

\section*{FORTRAN 90 Interface}

Generic: IFNAN (x)
Specific: The specific interface names are S_IFNAN and D_IFNAN.

\section*{FORTRAN 77 Interface}
\begin{tabular}{ll} 
Single: & IFNAN \((X)\) \\
Double: & The double precision name is DIFNAN.
\end{tabular}

\section*{Description}

The logical function IFNAN checks if the single or double precision argument \(X\) is NAN (not a number). The function IFNAN is provided to facilitate the transfer of programs across computer systems. This is because the check for NaN can be tricky and not portable across computer systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself. Thus, the check is performed as
```

IFNAN = X .NE. X

```

On other computers that do not use IEEE floating-point format, the check can be performed as:
```

IFNAN = X .EQ. AMACH(6)

```

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, (IEEE 1985). The above example illustrates the use of IFNAN. If \(X\) is \(N a N\), a message is printed instead of \(X\). (Routine UMACH, which is described in the following section, is used to retrieve the output unit number for printing the message.)

\section*{Example}
```

USE IFNAN INT
USE AMACH_INT
USE UMACH_INT

```
```

 IMPLICIT NONE
 INTEGER NOUT
 REAL X
 !
CALL UMACH (2, NOUT)
X = AMACH(6)
IF (IFNAN(X)) THEN
WRITE (NOUT,*) ' X is NaN (not a number).
ELSE
WRITE (NOUT,*) ' X = ', X
END IF
!
END

```

\section*{Output}
```

X is NaN (not a number).

```

\section*{UMACH}

Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

\section*{Required Arguments}
\(N\) - Integer value indicating the action desired. If the value of \(N\) is negative, the input, output, or error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. (Input)
NUNIT - The unit number that is either retrieved or set, depending on the value of input argument N . (Input/Output)
The arguments are summarized by the following table:
n Effect
1 Retrieves input unit number in NUNIT.
2 Retrieves output unit number in NUNIT.
3 Retrieves error output unit number in nUNIT.
-1 Sets the input unit number to NUNIT.
-2 Sets the output unit number to NUNIT.
-3 Sets the error output unit number to nunit.

\section*{FORTRAN 90 Interface}

Generic: CALL UMACH (N, NUNIT)
Specific: \(\quad\) The specific interface name is UMACH.

\section*{FORTRAN 77 Interface}

Single: CALL UMACH (N, NUNIT)

\section*{Description}

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is set automatically so that the default FORTRAN unit numbers for standard input, standard output, and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are changed from the standard values, the user should insert an appropriate OPEN statement in the calling program.

\section*{Example}

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function since the argument is invalid. With a call to UMACH, the error message will be written to a local file named "CHECKERR".
```

 USE AMACH_INT
 USE UMACH_INT
 IMPLICIT NONE
 INTEGER N, NUNIT
 REAL X
 N = 0
 NUNIT = 9
 CALL UMACH (-3, NUNIT)
OPEN (UNIT=9,FILE='CHECKERR')
X = AMACH(N)
END

```

\section*{Output}
```

The output from this example, written to "CHECKERR" is:
*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8

inclusive. N = O

```

\section*{Reserved Names}

When writing programs accessing IMSL MATH/LIBRARY Special Functions, the user should choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or named common blocks, such as the workspace common block WORKSP (see Automatic Workspace Allocation). The user needs to be aware of two types of name conflicts that can arise. The first type of name conflict occurs when a name (technically a symbolic name) is not uniquely defined within a program unit (either a main program or a subprogram). For example, such a name conflict exists when the name BSJS is used to refer both to a type REAL variable and to the IMSL routine BSJS in a single program unit. Such errors are detected during compilation and are easy to correct. The second type of name conflict, which can be more serious, occurs when names of program units and named common blocks are not unique. For example, such a name conflict would be caused by the user defining a routine named wORKSP and also referencing a MATH/LIBRARY Special Functions routine that uses the named common block workSP. Likewise, the user must not define a subprogram with the same name as a subprogram in MATH/LIBRARY Special Functions, that is referenced directly by the user's program or is referenced indirectly by other MATH/LIBRARY Special Functions subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are described in the User's Manual and others that are not intended to be called by the user and, hence, that are not documented. If the choice of names were completely random over the set of valid FORTRAN names and if a program uses only a small subset of MATH/LIBRARY Special Functions, the probability of name conflicts is very small. Since names are usually chosen to be mnemonic, however, the user may wish to take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the routine. For example, the IMSL single precision routine for computing Bessel functions of the first kind with real order has the name BSJS, which is the root name, and the corresponding IMSL double precision routine has the name DBSJS. Associated with these two routines are B2JS and DB2JS. BSJS is listed in the Alphabetical Index of Routines, but DBSJS, B2JS, and DB2JS are not. The user of BSJS must consider both names BSJS and B2JS to be reserved; likewise, the user of DBSJS must consider both names DBSJS and DB2JS to be reserved. The root names of all routines and named common blocks that are used by MATH/LIBRARY Special Functions and that do not have a numeral in the second position of the root name are listed in the Alphabetical Index of Routines. Some of the routines in this Index are not intended to be called by the user and so are not documented. The careful user can avoid any conflicts with IMSL names if the following rules are observed:
- Do not choose a name that appears in the Alphabetical Summary of Routines in the User's Manual, nor one of these names preceded by a \(\mathrm{D}_{1} \mathrm{~S}_{-}, \mathrm{D}_{-}, \mathrm{C}_{-}\), or \(\mathrm{Z}_{-}\).
- Do not choose a name of three or more characters with a numeral in the second or third position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user selects names that conform to these rules, no conflict will be encountered.

\section*{Deprecated Features and Deleted Routines}

\section*{Automatic Workspace Allocation}

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use as workspace while doing computations or moving around data. IMSL routines generally do not require the user explicitly to allocate such arrays for use as workspace. On most systems the workspace allocation is handled transparently. The only limitation is the actual amount of memory available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in a named common block WORKSP. A very similar use of a workspace stack is described by Fox et al. (1978, pages 116-121). (For compatibility with older versions of the IMSL Libraries, space is allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL Math routine LSARG (in Chapter 1, "Linear Systems"), which solves systems of linear equations, needs arrays for workspace. LSARG allocates arrays from the common area, and passes them to the lower-level routine L2ARG which does the computations. In the "Comments" section of the documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described. This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names of these routines have a " 2 " in the second position (or in the third position in double precision routines having a " \(D\) " prefix). The user can provide workspace explicitly and call directly the "2-level" routine, which is documented along with the main routine. In a very few cases, the 2-level routine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates that space so that it becomes available for use in other routines.

\section*{Changing the Amount of Space Allocated}

This section is relevant only to those systems on which the transparent workspace allocator is not available.
By default, the total amount of space allocated in the common area for storage of numeric data is 5000 numeric storage units. (A numeric storage unit is the amount of space required to store an integer or a real number. By comparison, a double precision unit is twice this amount. Therefore, the total amount of space allocated in the common area for storage of numeric data is 2500 double precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For larger problems in which the default amount of workspace is insufficient, the user can change the allocation by supplying the FORTRAN statements to define the array in the named common block and by informing the IMSL workspace allocation system of the new size of the common array. To request 7000 units, the statements are

COMMON /WORKSP/ RWKSP
REAL RWKSP (7000)
CALL IWKIN (7000)
If an IMSL routine attempts to allocate workspace in excess of the amount available in the common stack, the routine issues a fatal error message that indicates how much space is needed and prints statements like those above to guide the user in allocating the necessary amount. The program below uses IMSL routine BSJS (See Chapter 6, "Bessel Functions" of this manual) to illustrate this feature.

This routine requires workspace that is just larger than twice the number of function values requested.
```

INTEGER N
REAL BS(10000), X, XNU
EXTERNAL BSJS
! Set Parameters
XNU = . 5
X = 1.
N}=600
CALL BSJS (XNU, X, N, BS)
END

```
```

Output
*** TERMINAL ERROR from BSJS. Insufficient workspace for
*** current allocation(s). Correct by calling
*** IWKIN from main program with the three
*** following statements: (REGARDLESS OF
*** PRECISION)
*** COMMON /WORKSP/ RWKSP
*** REAL RWKSP(12018)
*** CALL IWKIN(12018)
*** TERMINAL ERROR from BSJS. The workspace requirement is
*** based on N =6000.
STOP

```

In most cases, the amount of workspace is dependent on the parameters of the problem so the amount needed is known exactly. In a few cases, however, the amount of workspace is dependent on the data (for example, if it is necessary to count all of the unique values in a vector). Thus, the IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases, the error message printed is an estimate of the amount of space required.

\section*{Character Workspace}

Since character arrays cannot be equivalenced with numeric arrays, a separate named common block WKSPCH is provided for character workspace. In most respects, this stack is managed in the same way as the numeric stack. The default size of the character workspace is 2000 character units. (A character unit is the amount of space required to store one character.) The routine analogous to IWKIN used to change the default allocation is IWKCIN.

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY Special Functions. A deprecated routine is one that is no longer used by anything in the library but is being included in the product for those users who may be currently referencing it in their application. However, any future versions of MATH/LIBRARY Special Functions will not include these routines. If any of these routines are being called within an application, it is recommended that you change your code or retain the deprecated routine before replacing this library with the next version. Most of these routines were called by users only when they needed to set up their own workspace. Thus, the impact of these changes should be limited.

G2DF
G2 IN
G3DF

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can all be found in their manufacturer's FORTRAN runtime libraries. If any change must be made to the user's application as a result of their removal from the IMSL Libraries, it is limited to the redeclaration of the function from "external" to "intrinsic." Argument lists and results should be identical.
\begin{tabular}{|l|l|l|l|}
\hline ACOS & CEXP & DATAN2 & DSQRT \\
\hline AINT & CLOG & DCOS & DTAN \\
\hline ALOG & COS & DCOSH & DTANH \\
\hline ALOG10 & COSH & DEXP & EXP \\
\hline ASIN & CSIN & DINT & SIN \\
\hline ATAN & CSQRT & DLOG & SINH \\
\hline ATAN2 & DACOS & DLOG10 & SQRT \\
\hline CABS & DASIN & DSIN & TAN \\
\hline CCOS & DATAN & DSINH & TANH \\
\hline
\end{tabular}

\section*{Appendix A: Alphabetical Summary of Routines}
[ A ][ B ][ C ][ D ][ E ][F ][ G ][ H ][ I ][ L ][ M ][ N ][ P ][ R ][ S ][ T ][ U ][ W ]

A
\begin{tabular}{|l|l|}
\hline ACOS & Evaluates the complex arc cosine. \\
\hline ACOSH & Evaluates the real or complex arc hyperbolic cosine. \\
\hline AI & Evaluates the Airy function. \\
\hline AID & Evaluates the derivative of the Airy function. \\
\hline AIDE & Evaluates the Airy function of the second kind. \\
\hline AIE & Evaluates the exponentially scaled derivative of the Airy function. \\
\hline AKEI0 & Evaluates the Kelvin function of the second kind, kei, of order zero. \\
\hline AKEI1 & Evaluates the Kelvin function of the second kind, kei, of order one. \\
\hline AKEIP0 & \begin{tabular}{l} 
Evaluates the derivative of the Kelvin function of the second kind, \\
kei, of order zero.
\end{tabular} \\
\hline AKER0 & Evaluates the Kelvin function of the second kind, ker, of order zero. \\
\hline AKER1 & Evaluates the Kelvin function of the second kind, ker, of order one. \\
\hline AKERP0 & \begin{tabular}{l} 
Evaluates the derivative of the Kelvin function of the second kind, \\
ker, of order zero.
\end{tabular} \\
\hline AKS1DF & \begin{tabular}{l} 
Evaluates the cumulative distribution function of the one-sided \\
Kolmogorov-Smirnov goodness of fit \(D^{+}\)or \(D^{-}\)test statistic based \\
on continuous data for one sample.
\end{tabular} \\
\hline AKS2DF & \begin{tabular}{l} 
Evaluates the cumulative distribution function of the \\
Kolmogorov-Smirnov goodness of fit \(D\) test statistic based on \\
continuous data for two samples.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline ALBETA & \begin{tabular}{l} 
Evaluates the natural logarithm of the complete beta function for \\
positive arguments.
\end{tabular} \\
\hline ALGAMS & \begin{tabular}{l} 
Returns the logarithm of the absolute value of the gamma function \\
and the sign of gamma.
\end{tabular} \\
\hline ALI & Evaluates the logarithmic integral. \\
\hline ALNDF & \begin{tabular}{l} 
Evaluates the lognormal cumulative probability distribution \\
function
\end{tabular} \\
\hline ALNGAM & Evaluates the real or complex function, ln \(|\gamma(x)|\). \\
\hline ALNIN & \begin{tabular}{l} 
Evaluates the inverse of the lognormal cumulative probability dis- \\
tribution function.
\end{tabular} \\
\hline ALNPR & Evaluates the lognormal probability density function. \\
\hline ALNREL & Evaluates ln \((x+1)\) for real or complex \(x\). \\
\hline AMACH & Retrieves single-precision machine constants. \\
\hline ANORDF & \begin{tabular}{l} 
Evaluates the standard normal (Gaussian) cumulative distribution \\
function.
\end{tabular} \\
\hline ANORPR & Evaluates the normal probability density function. \\
\hline ANORIN & \begin{tabular}{l} 
Evaluates the inverse of the standard normal (Gaussian) cumula- \\
tive distribution function.
\end{tabular} \\
\hline ASIN & Evaluates the complex arc sine. \\
\hline ASINH & Evaluates the sinh \({ }^{-1}\) arc sine \(x\) for real or complex \(x\). \\
\hline ATAN & Evaluates the complex arc tangent. \\
\hline ATAN2 & Evaluates the complex arc tangent of a ratio. \\
\hline ATANH & Evaluates tanh \({ }^{-1} x\) for real or complex \(x\). \\
\hline
\end{tabular}

\section*{B}
\begin{tabular}{|l|l|}
\hline BEI0 & Evaluates the Kelvin function of the first kind, bei, of order zero. \\
\hline BEI1 & Evaluates the Kelvin function of the first kind, bei, of order one. \\
\hline BEIP0 & \begin{tabular}{l} 
Evaluates the derivative of the Kelvin function of the first kind, bei, \\
of order zero.
\end{tabular} \\
\hline BER0 & Evaluates the Kelvin function of the first kind, ber, of order zero. \\
\hline BER1 & Evaluates the Kelvin function of the first kind, ber, of order one. \\
\hline BERP0 & \begin{tabular}{l} 
Evaluates the derivative of the Kelvin function of the first kind, ber, \\
of order zero.
\end{tabular} \\
\hline BETA & Evaluates the real or complex beta function, \(\beta(a, b)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline BETAI & Evaluates the incomplete beta function ratio. \\
\hline BETDF & Evaluates the beta cumulative distribution function. \\
\hline BETIN & Evaluates the inverse of the beta cumulative distribution function. \\
\hline BETNDF & Evaluates the beta cumulative distribution function. \\
\hline BETNIN & Evaluates the inverse of the beta cumulative distribution function. \\
\hline BETNPR & This function evaluates the noncentral beta probability density function. \\
\hline BETPR & Evaluates the beta probability density function. \\
\hline BI & Evaluates the Airy function of the second kind. \\
\hline BID & Evaluates the derivative of the Airy function of the second kind. \\
\hline BIDE & Evaluates the exponentially scaled derivative of the Airy function of the second kind. \\
\hline BIE & Evaluates the exponentially scaled Airy function of the second kind. \\
\hline BINDF & Evaluates the binomial cumulative distribution function. \\
\hline BINOM & Evaluates the binomial coefficient. \\
\hline BINPR & Evaluates the binomial probability density function. \\
\hline BNRDF & Evaluates the bivariate normal cumulative distribution function. \\
\hline BSIO & Evaluates the modified Bessel function of the first kind of order zero. \\
\hline BSIOE & Evaluates the exponentially scaled modified Bessel function of the first kind of order zero. \\
\hline BSI1 & Evaluates the modified Bessel function of the first kind of order one. \\
\hline BSI1E & Evaluates the exponentially scaled modified Bessel function of the first kind of order one. \\
\hline BSIES & Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with nonnegative real order and real positive arguments. \\
\hline BSINS & Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or complex arguments. \\
\hline BSIS & Evaluates a sequence of modified Bessel functions of the first kind with real order and real positive arguments. \\
\hline BSJ0 & Evaluates the Bessel function of the first kind of order zero. \\
\hline BSJ1 & Evaluates the Bessel function of the first kind of order one. \\
\hline BSJNS & Evaluates a sequence of Bessel functions of the first kind with integer order and real arguments. \\
\hline BSJS & Evaluates a sequence of Bessel functions of the first kind with real order and real positive arguments. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline BSK0 & \begin{tabular}{l} 
Evaluates the modified Bessel function of the second kind of order \\
zero.
\end{tabular} \\
\hline BSK0E & \begin{tabular}{l} 
Evaluates the exponentially scaled modified Bessel function of the \\
second kind of order zero.
\end{tabular} \\
\hline BSK1 & \begin{tabular}{l} 
Evaluates the modified Bessel function of the second kind of order \\
one.
\end{tabular} \\
\hline BSK1E & \begin{tabular}{l} 
Evaluates the exponentially scaled modified Bessel function of the \\
second kind of order one.
\end{tabular} \\
\hline BSKES & \begin{tabular}{l} 
Evaluates a sequence of exponentially scaled modified Bessel func- \\
tions of the second kind of fractional order.
\end{tabular} \\
\hline BSKS & \begin{tabular}{l} 
Evaluates a sequence of modified Bessel functions of the second \\
kind of fractional order.
\end{tabular} \\
\hline BSY0 & Evaluates the Bessel function of the second kind of order zero. \\
\hline BSY1 & Evaluates the Bessel function of the second kind of order one. \\
\hline BSYS & \begin{tabular}{l} 
Evaluates a sequence of Bessel functions of the second kind with \\
real nonnegative order and real positive arguments.
\end{tabular} \\
\hline
\end{tabular}

\section*{C}
\begin{tabular}{|l|l|}
\hline CAI & Evaluates the Airy function of the first kind for complex arguments. \\
\hline CAID & Evaluates the derivative of the Airy function of the first kind for complex arguments. \\
\hline CARG & Evaluates the argument of a complex number. \\
\hline CBI & Evaluates the Airy function of the second kind for complex arguments. \\
\hline CBID & Evaluates the derivative of the Airy function of the second kind for complex arguments. \\
\hline CBIS & \begin{tabular}{l} 
Evaluates a sequence of modified Bessel functions of the first kind with real order and \\
complex arguments.
\end{tabular} \\
\hline CBJS & \begin{tabular}{l} 
Evaluates a sequence of Bessel functions of the first kind with real order and complex \\
arguments. \\
CBKS
\end{tabular} \\
\hline Evaluates a sequence of Modified Bessel functions of the second kind with real order and \\
complex arguments.
\end{tabular}
\begin{tabular}{|l|l|}
\hline CHIPR & Evaluates the chi-squared probability density function \\
\hline CI & Evaluates the cosine integral. \\
\hline CIN & Evaluates a function closely related to the cosine integral. \\
\hline CINH & Evaluates a function closely related to the hyperbolic cosine integral. \\
\hline COSDG & Evaluates the cosine for the argument in degrees. \\
\hline COT & Evaluates the cotangent. \\
\hline CSEVL & Evaluates the N-term Chebyshev series. \\
\hline CSNDF & Evaluates the noncentral chi-squared cumulative distribution function. \\
\hline CSNIN & Evaluates the inverse of the noncentral chi-squared cumulative function. \\
\hline CSNPR & \begin{tabular}{l} 
Evaluates the Weierstrass \(P\)-function in the lemniscat case for complex argument with \\
unit period parallelogram.
\end{tabular} \\
\hline CWPL & \begin{tabular}{l} 
Evaluate the first derivative of the Weierstrass \(P\)-function in the lemniscatic case for com- \\
plex argum with unit period parallelogram.
\end{tabular} \\
\hline CWPLD & \begin{tabular}{l} 
Evaluates the Weierstrass \(P\)-function in the equianharmonic case for complex argument \\
with unit period parallelogram.
\end{tabular} \\
\hline CWPQ & \begin{tabular}{l} 
Evaluates the first derivative of the Weierstrass \(P\)-function in the equianharmonic case for \\
complex argument with unit period parallelogram.
\end{tabular} \\
\hline CWPQD &
\end{tabular}

D
\begin{tabular}{|l|l|}
\hline DAWS & Evaluates Dawson function. \\
\hline DMACH & Retrieves double precision machine constants. \\
\hline
\end{tabular}

E
\begin{tabular}{|l|l|}
\hline E1 & \begin{tabular}{l} 
Evaluates the exponential integral for arguments greater than zero \\
and the Cauchy principal value of the integral for arguments less \\
than zero.
\end{tabular} \\
\hline EI & \begin{tabular}{l} 
Evaluates the exponential integral for arguments greater than zero \\
and the Cauchy principal value for arguments less than zero.
\end{tabular} \\
\hline EJCN & Evaluates the Jacobi elliptic function cn \((x, m)\). \\
\hline EJDN & This function evaluates the Jacobi elliptic function \(\operatorname{dn}(x, m)\). \\
\hline EJSN & Evaluates the Jacobi elliptic function \(\operatorname{sn}(x, m)\). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline ELE & Evaluates the complete elliptic integral of the second kind \(E(x)\). \\
\hline ELK & Evaluates the complete elliptic integral of the kind \(K(x)\). \\
\hline ELRC & \begin{tabular}{l} 
Evaluates an elementary integral from which inverse circular func- \\
tions, logarithms and inverse hyperbolic functions can be \\
computed.
\end{tabular} \\
\hline ELRD & \begin{tabular}{l} 
Evaluates Carlson's incomplete elliptic integral of the second kind \\
RD(X, Y, z).
\end{tabular} \\
\hline ELRF & \begin{tabular}{l} 
Evaluates Carlson's incomplete elliptic integral of the first kind \\
RF(X, Y, z).
\end{tabular} \\
\hline ELRJ & \begin{tabular}{l} 
Evaluates Carlson's incomplete elliptic integral of the third kind \\
RJ(X, Y, Z, RHO).
\end{tabular} \\
\hline ENE & \begin{tabular}{l} 
Evaluates the exponential integral of integer order for arguments \\
greater than zero scaled by EXP(X).
\end{tabular} \\
\hline ERF & Evaluates the error function. \\
\hline ERFC & Evaluates the complementary error function. \\
\hline ERFCE & Evaluates the exponentially scaled complementary error function. \\
\hline ERFCI & Evaluates the inverse complementary error function. \\
\hline ERFI & Evaluates the inverse error function. \\
\hline ERSET & Sets error handler default printer and stop actions. \\
\hline EXPDF & Evaluates the exponential cumulative distribution function. \\
\hline EXPIN & \begin{tabular}{l} 
Evaluates the inverse of the exponential cumulative distribution \\
function.
\end{tabular} \\
\hline EXPPR & Evaluates the exponential probability density function. \\
\hline EXPRL & \begin{tabular}{l} 
Evaluates \(\left(e^{x}-1\right) / x\) for real or complex \(x\). \\
\hline EXVDF \\
\hline EXVIN \\
function.
\end{tabular} \\
\hline EXVPR & Evaluates the extreme value probability density function. \\
\hline
\end{tabular}

F
\begin{tabular}{|l|l|}
\hline FAC & Evaluates the factorial of the argument. \\
\hline FDF & Evaluates the \(F\) cumulative distribution function. \\
\hline FIN & Evaluates the inverse of the \(F\) cumulative distribution function. \\
\hline FNDF & Noncentral \(F\) cumulative distribution function. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FNIN & \begin{tabular}{l} 
This function evaluates the inverse of the noncentral \(F\) cumulative \\
distribution function (CDF).
\end{tabular} \\
\hline FNPR & \begin{tabular}{l} 
This function evaluates the noncentral F cumulative distribution \\
function (CDF).
\end{tabular} \\
\hline FPR & Evaluates the \(F\) probability density function. \\
\hline FRESC & Evaluates the cosine Fresnel integral. \\
\hline FRESS & Evaluates the sine Fresnel integral. \\
\hline
\end{tabular}

G
\begin{tabular}{|l|l|}
\hline GAMDF & Evaluates the gamma cumulative distribution function. \\
\hline GAMI & Evaluates the incomplete gamma function. \\
\hline GAMIC & Evaluates the complementary incomplete gamma function. \\
\hline GAMIN & \begin{tabular}{l} 
This function evaluates the inverse of the gamma cumulative distri- \\
bution function.
\end{tabular} \\
\hline GAMIT & Evaluates the Tricomi form of the incomplete gamma function. \\
\hline GAMMA & Evaluates the real or complex gamma function, \(\Gamma(x)\). \\
\hline GAMPR & This function evaluates the gamma probability density function. \\
\hline GAMR & \begin{tabular}{l} 
Evaluates the reciprocal of the real or complex gamma function, \\
\(1 / \Gamma(x)\).
\end{tabular} \\
\hline GCDF & \begin{tabular}{l} 
Evaluates a general continuous cumulative distribution function \\
given ordinates of the density.
\end{tabular} \\
\hline GCIN & \begin{tabular}{l} 
Evaluates the inverse of a general continuous cumulative distribu- \\
tion function given ordinates of the density.
\end{tabular} \\
\hline GEODF & \begin{tabular}{l} 
Evaluates the discrete geometric cumulative probability distribu- \\
tion function.
\end{tabular} \\
\hline GEOIN & \begin{tabular}{l} 
Evaluates the inverse of the geometric cumulative probability dis- \\
tribution function.
\end{tabular} \\
\hline GEOPR & Evaluates the discrete geometric probability density function. \\
\hline GFNIN & \begin{tabular}{l} 
Evaluates the inverse of a general continuous cumulative distribu- \\
tion function given in a subprogram.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline HYPDF & Evaluates the hypergeometric cumulative distribution function. \\
\hline HYPPR & Evaluates the hypergeometric probability density function. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline IERCD and N1RTY & Retrieves the integer code for an informational error. \\
\hline IFNAN (X) & Checks if a value is NaN (not a number). \\
\hline IMACH & Retrieves integer machine constants. \\
\hline INITS & \begin{tabular}{l} 
Initializes the orthogonal series so the function value is the number \\
of terms needed to insure the error is no larger than the requested \\
accuracy.
\end{tabular} \\
\hline
\end{tabular}

L
\begin{tabular}{|l|l|}
\hline LOG10 & Evaluates the complex base \(10 \operatorname{logarithm}, \log _{10} z\). \\
\hline
\end{tabular}

M
\begin{tabular}{|l|l|}
\hline MATCE & \begin{tabular}{l} 
Evaluates a sequence of even, periodic, integer order, real Mathieu \\
functions.
\end{tabular} \\
\hline MATEE & Evaluates the eigenvalues for the periodic Mathieu functions. \\
\hline MATSE & \begin{tabular}{l} 
Evaluates a sequence of odd, periodic, integer order, real Mathieu \\
functions.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline IERCD and N1RTY & \begin{tabular}{l} 
Retrieves the error type set by the most recently called IMSL \\
routine.
\end{tabular} \\
\hline
\end{tabular}

P
\begin{tabular}{|l|l|}
\hline POCH & Evaluates a generalization of Pochhammer's symbol. \\
\hline POCH1 & \begin{tabular}{l} 
Evaluates a generalization of Pochhammer's symbol starting from \\
the first order.
\end{tabular} \\
\hline POIDF & Evaluates the Poisson cumulative distribution function. \\
\hline POIPR & Evaluates the Poisson probability density function. \\
\hline PSI & Evaluates the derivative of the log gamma function. \\
\hline PSI1 & Evaluates the second derivative of the log gamma function. \\
\hline
\end{tabular}

R
\begin{tabular}{|l|l|}
\hline RALDF & Evaluates the Rayleigh cumulative distribution function. \\
\hline RALIN & \begin{tabular}{l} 
Evaluates the inverse of the Rayleigh cumulative distribution \\
function.
\end{tabular} \\
\hline RALPR & Evaluates the Rayleigh probability density function. \\
\hline
\end{tabular}

S
\begin{tabular}{|l|l|}
\hline SHI & Evaluates the hyperbolic sine integral. \\
\hline SI & Evaluates the sine integral. \\
\hline SINDG & Evaluates the sine for the argument in degrees. \\
\hline SPENC & Evaluates a form of Spence's integral. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline TAN & Evaluates tan \(z\) for complex \(z\). \\
\hline TDF & Evaluates the Student's \(t\) cumulative distribution function. \\
\hline TIN & \begin{tabular}{l} 
Evaluates the inverse of the Student's \(t\) cumulative distribution \\
function.
\end{tabular} \\
\hline TNDF & \begin{tabular}{l} 
Evaluates the noncentral Student's \(t\) cumulative distribution \\
function.
\end{tabular} \\
\hline TNIN & \begin{tabular}{l} 
Evaluates the inverse of the noncentral Student's \(t\) cumulative dis- \\
tribution function.
\end{tabular} \\
\hline TNPR & \begin{tabular}{l} 
This function evaluates the noncentral Student's \(t\) probability den- \\
sity function.
\end{tabular} \\
\hline TPR & Evaluates the Student's \(t\) probability density function. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline UMACH & Sets or Retrieves input or output device unit numbers. \\
\hline UNDF & Evaluates the uniform cumulative distribution function. \\
\hline UNDDF & Evaluates the discrete uniform cumulative distribution function. \\
\hline UNDIN & \begin{tabular}{l} 
Evaluates the inverse of the discrete uniform cumulative distribu- \\
tion function.
\end{tabular} \\
\hline UNDPR & Evaluates the discrete uniform probability density function. \\
\hline UNIN & \begin{tabular}{l} 
Evaluates the inverse of the uniform cumulative distribution \\
function.
\end{tabular} \\
\hline UNPR & Evaluates the uniform probability density function. \\
\hline
\end{tabular}

W
\begin{tabular}{|l|l|}
\hline WBLDF & Evaluates the Weibull cumulative distribution function \\
\hline WBLIN & \begin{tabular}{l} 
Evaluates the inverse of the Weibull cumulative distribution \\
function.
\end{tabular} \\
\hline WBLPR & Evaluates the Weibull probability density function. \\
\hline
\end{tabular}

\section*{Abramowitz and Stegun}

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Abramowitz, Milton, and Irene A. Stegun (editors) (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th Edition, US Government Printing Office, Washington, DC, Chapter 9.

\section*{Aird and Howell}

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

\section*{Akima}

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal of the ACM, 17, 589-602.

\section*{Barnett}

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy, Computer Physics Communications, 21, 297-314.

\section*{Boisvert, Howe, Kahaner, and Springmann}

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the management of scientific software, ACM Transactions on Mathematical Software, 11, 313-355.

\section*{Bosten and Battiste}

Bosten, Nancy E., and E.L. Battiste (1974b), Incomplete beta ratio, Communications of the ACM, 17, 156-157.

Bosten, Nancy E., and E.L. Battiste (1974), Remark on algorithm 179, Communications of the ACM, 17, 153.

\section*{Burgoyne}

Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation 83, 295-298.

\section*{Butler and Paolella}

Butler, R. W., and M. S. Paolella (1999), Calculating the Density and Distribution Function for the Singly and Doubly Noncentral F, Preliminary Version, Paolella.pdf, p.10, eq.(30) and ff.

\section*{Carlson}

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1-16.

\section*{Carlson and Notis}

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM Transactions on Mathematical Software, 7, 398-403.

\section*{Cody}

Cody, W.J. (1969) Performance testing of function subroutines, Proceedings of the Spring Joint Computer Conference, American Federation for Information Processing Societies Press, Montvale, New Jersey, 759-763.

Cody, W.J. (1983), Algorithm 597: A sequence of modified Bessel functions of the first kind, ACM Transactions on Mathematical Software, 9, 242-245.

\section*{Cody et al.}

Cody, W.J., R.M. Motley, and L.W. Fullerton (1976), The computation of real fractional order Bessel functions of the second kind, Applied Mathematics Division Technical Memorandum No. 291, Argonne National Laboratory, Argonne.

\section*{Conover}

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley \& Sons, New York.

\section*{Cooper}

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17, 190-192.

\section*{Eckhardt}

Eckhardt, Ulrich (1977), A rational approximation to Weierstrass' P-function. II: The Lemniscatic case, Computing, 18, 341-349.

Eckhardt, Ulrich (1980), Algorithm 549: Weierstrass' elliptic functions, ACM Transactions on Mathematical Software, 6, 112-120.

\section*{Fabijonas et al.}
B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver Computation of Complex Airy Functions and Their Zeros Using Asymptotics and the Differential Equation, ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004, 471-490.

\section*{Fox et al.}

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM Transactions on Mathematical Software, 4, 104-126.

\section*{Gautschi}

Gautschi, Walter (1964), Bessel functions of the first kind, Communications of the ACM, 7, 187-198.
Gautschi, Walter (1969), Complex error function, Communications of the ACM, 12, 635. Gautschi, Walter (1970), Efficient computation of the complex error function, SIAM Journal on Mathematical Analysis, 7, 187-198.

Gautschi, Walter (1974), Algorithm 471: Exponential integrals, Collected Algorithms from CACM, 471.
Gautschi, Walter (1979), A computational procedure for the incomplete gamma function, ACM Transactions on Mathematical Software, 5, 466-481.

Gautschi, Walter (1979), Algorithm 542: Incomplete gamma functions, ACM Transactions on Mathematical Software, 5, 482-489.

\section*{Giles and Feng}

Giles, David E. and Hui Feng. (2009). "Bias-Corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution." Econometrics Working Paper EWP0902, Department of Economics, University of Victoria.

\section*{Gradshteyn and Ryzhik}

Gradshteyn, I.S. and I.M. Ryzhik (1965), Table of Integrals, Series, and Products, (translated by Scripta Technica, Inc.), Academic Press, New York.

\section*{Hart et al.}

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley \& Sons, New York.

\section*{Hill}

Hill, G.W. (1970), Student's \(t\)-distribution, Communications of the ACM, 13, 617-619.

\section*{Hodge}

Hodge, D.B. (1972), The calculation of the eigenvalues and eigenvectors of Mathieu's equation, NASA Contractor Report, The Ohio State University, Columbus, Ohio.

\section*{Hosking, et al.}

Hosking, J.R.M., Wallis, J.R., and E.F. Wood. (1985). "Estimation of the Generalized Extreme Value Distribution by the Method of Probability-Weighted Moments." Technometrics. Vol 27. No. 3. pp 251-261.

\section*{Hosking and Wallis}

Hosking, J.R.M. and J.R. Wallis. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution." Technometrics. Vol 29. No. 3. pp 339-349.

\section*{IEEE}

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The IEEE, Inc., New York.

\section*{Johnson and Kotz}

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin Company, Boston.
Johnson, Norman L., and Samuel Kotz (1970a), Continuous Distributions-1, John Wiley \& Sons, New York.
Johnson, Norman L., and Samuel Kotz (1970b), Continuous Distributions-2, John Wiley \& Sons, New York.

\section*{Kendall and Stuart}

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics, Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New York.

\section*{Kim and Jennrich}

Kim, P.J., and Jennrich, R.I. (1973), Tables of the exact sampling distribution of the two sample Kolmogorov-Smirnov criterion Dmn \((m<n)\), in Selected Tables in Mathematical Statistics, Volume 1, (edited by H.L. Harter and D.B. Owen), American Mathematical Society, Providence, Rhode Island.

\section*{Kinnucan and Kuki}

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function subroutine, Computation Center, University of Chicago.

\section*{Luke}

Luke, Y.L. (1969), The Special Function and their Approximations, Volume 1, Academic Press, 34.

\section*{Majumder and Bhattacharjee}

Majumder, K. L., and G. P. Bhattacharjee (1973), The Incomplete Beta Integral, Algorithm AS 63:Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 22, No. 3,. 409-411, Blackwell Publishing for the Royal Statistical Society, http://www.jstor.org/stable/2346797.

\section*{NATS FUNPACK}

NATS (National Activity to Test Software) FUNPACK (1976), Argonne National Laboratory, Argonne Code Center, Argonne.

\section*{Olver and Sookne}

Olver, F.W.J., and D.J. Sookne (1972), A note on the backward recurrence algorithms, Mathematics of Computation, 26, 941-947.

\section*{Owen}

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.
Owen, D.B. (1965), A special case of the bivariate non-central t-distribution, Biometrika, 52, 437-446.

\section*{Pennisi}

Pennisi, L.L. (1963), Elements of Complex Variables, Holt, Rinehart and Winston, New York.

\section*{Skovgaard}

Skovgaard, Ove (1975), Remark on algorithm 236, ACM Transactions on Mathematical Software, 1, 282-284.

\section*{Sookne}

Sookne, D.J. (1973a), Bessel functions I and J of complex argument and integer order, National Bureau of Standards Journal of Research B, 77B, 111-114.

Sookne, D.J. (1973b), Bessel functions of real argument and integer order, National Bureau of Standards Journal of Research B, 77A, 125-132.

\section*{Stephens}

Stephens, M.A., and D'Agostino, R.B (1986), Tests based on EDF statistics., Goodness-of-Fit Techniques. Marcel Dekker, New York.

\section*{Strecok}

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation, 22, 144-158.

\section*{Temme}

Temme, N. M. (1975), On the numerical evaluation of the modified Bessel function of the third kind, Journal of Computational Physics, 19, 324-337.

\section*{Thompson and Barnett}

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions \(I v(z)\) and \(K v(z)\) of real order and complex argument, to selected accuracy, Computer Physics Communications, 47, 245-257.

\section*{Yousif and Melka}

Yousif, Hashim A., and Richard Melka (1997), Bessel function of the first kind with complex argument, Computer Physics Communications, vol. 106, no. 3, 199-206.

Yousif, Hashim A., and Richard Melka (2003), Computing Bessel functions of the second kind in extreme parameter regimes, Computer Physics Communications, 151, 25-34.

\section*{Index}

\section*{A}

Airy function 226, 242
derivative 230, 246
exponentially scaled 234
derivative 238
second kind 228, 244
derivative 232, 248
exponentially scaled 236
exponentially scaled derivative 240
arguments, optional subprogram 7

\section*{B}

Bessel functions
first kind
integer order 169
order one 146
order zero 144
real order 175, 187
modified
exponentially scaled 161, 163, 165, 167, 181, 185
first kind, integer order 172
first kind, nonnegative real order 181
first kind, order one 154, 163
first kind, order zero 152, 161
first kind, real order 179, 193
second kind, fractional order 185
second kind, order one 159, 167
second kind, order zero 156, 165
second kind, real order 195
third kind, fractional order 183
second kind
order one 150
order zero 148
real nonnegative order 177
real order 190
beta distribution function 341
beta functions
complete 83, 109
natural logarithm 112
incomplete 114
beta probability density 343
beta probability distribution function 338
binomial coefficient 83
binomial distribution function 294
binomial probability function 296
bivariate normal distribution
function 354

C
Cauchy principal value 57,59
characteristic values 446
Chebyshev series 458,463
chi-squared distribution function 356,359, 363
chi-squared probability density 361
complex numbers evaluating 11
continuous data 320,323
cosine arc
hyperbolic 50 complex 36
hyperbolic 44
in degrees 32 integrals 68,70
hyperbolic 74,76
cotangent evaluating 27
cube roots evaluating 13
cumulative distribution
function 436
cumulative distribution functions (CDF) 290

\section*{D}

Dawson's function
evaluating 134
discrete uniform cumulative probability 314
discrete uniform cumulative probability distribution 314
discrete uniform probability density 318
discrete uniform random variable 316
distribution functions 290
cumulative (CDF) 290
general continuous cumulative inverse 439
double precision 1
DOUBLE PRECISION types 3

E
eigenvalues 446
elementary functions 2
elliptic integrals
complete 255
second kind 257
first kind
Carlson's incomplete 259
second kind
Carlson's incomplete 261
third kind
Carlson's incomplete 263
error functions 118,119
complementary 121
complex scaled 126
exponentially scaled 124
inverse 131
inverse 128
error handling 470
error-handling 5,7
errors
alert 293
informational 466
note 293
severity level 7
terminal 293, 466
warning 293
exponential cumulative probability distribution 371
exponential functions first order 15
exponential integrals \(56,57,59\)
of integer order 61
exponential probability density 375
extreme value cumulative proba-
bility distribution 377
extreme value probability
density 381

\section*{F}

F distribution function 383,386
factorial 81
Fresnal integrals 118
cosine 136
sine 138

\section*{G}
gamma distribution function 399, 402
gamma distributions
standard 290
gamma functions 80
complete 85
incomplete 95
complementary 97
Tricomi form 99
logarithmic derivative 101, 103
reciprocal 88
gamma probability density 404
general continuous cumulative distribution function 442
Geometric
inverse of the geometric cumu-
lative probability
distribution 301
geometric cumulative probability distribution 299
geometric probability density 303
getting started 1,6

\section*{H}
hyperbolic functions 2
hypergeometric distribution function 305
hypergeometric probability function 307

\section*{I}

INTEGER types 3
inverse of the exponential cumulative probability 373
inverse of the geometric cumulative probability distribution 301
inverse of the lognormal cumulative probability distribution 328
inverse of the Rayleigh cumulative probability distribution 408
inverse of the uniform cumulative probability distribution 426
inverse of the Weibull cumulative probability distribution 432

\section*{J}

Jacobi elliptic function 277, 280, 283

\section*{K}

Kelvin function
first kind
order one 218
order zero 200, 202, 208, 210
second kind
order one 220, 222
order zero 204, 206, 212, 214
Kolmogorov-Smirnov goodness of fit 320, 323

\section*{L}
library subprograms 4
logarithmic integrals 63
logarithms
complex
common 17
for gamma functions 90, 93 natural 19, 112
lognormal cumulative probability distribution 326
lognormal probability density 330
M
machine-dependent constants 471
Mathieu functions
even 450
integer order 450, 454
odd 454
periodic \(447,450,454\)
real 450, 454

N
naming conventions 3
noncentral chi-squared
function 366
normal probability density 336

\section*{O}
optional argument 7
optional data 7
optional subprogram arguments 7
ordinates of the density 436
orthogonal series 462
overflow 5, 19

\section*{P}

Pochhammer's symbol 105, 107, 458
Poisson distribution function 309
Poisson probability function 311
printing 469
printing results 8
probability density function
(PDF) 291
probability functions 290
R
Rayleigh cumulative probability distribution 406
Rayleigh probability density 409
REAL types 3
required arguments 7

\section*{S}
sine
arc
hyperbolic 48
complex
arc 34
hyperbolic 42
in degrees 30
integrals 66
hyperbolic 72
single precision 1
Spence's integral 460
standard normal (Gaussian) distribution function 332, 334
Student's t distribution function 411, 413, 417, 420
subprograms
library 4
optional arguments 7

\section*{T}
tangent
arc
hyperbolic 52
complex 25
arc 38
arc of a ratio 40
hyperbolic 46
trigonometric functions 2

\section*{U}
underflow 5
uniform cumulative probability
distribution 424
uniform probability density 428
user interface 1
using library subprograms 4
W
Weibull cumulative probability distribution 430
Weibull cumulative probability distribution function 430
Weibull probability density 434
Weibull random variable 432
Weierstrass' function
equianharmonic case 273,275
lemniscatic case 269, 271```

